

WHAT IS RAID?

- Redundant Array of Independent Disks
- - storage technology that combines multiple disk drives into what a computer's OS will recognize as one or more logical units
- Goals Increased reliability, availability, performance, and capacity
- "RAID Levels"

BEFORE RAID

- 1956: International Business Machines Corporation (IBM) announces the RAMAC 305, the first hard disk system that holds 5MB of data
- 1961: Ampex develops helical scanning video recording which will later be adapted for high-capacity tape storage
- 1973: IBM's hermetically sealed Winchester Hard Disks become the standard design for disc drives
- 1979: Seagate Technology begins producing hard disk drives for desktop computers
- 1986: Small Computer System Interface (SCSI) is standardized by the American National Standards Institute

IBM Winchester

RESEARCH AT UNIVERSITY OF CALIFORNIA, BERKELEY

- 1983: Randy H. Katz joins Berkeley Faculty works with Michael Stonebreaker on Ingres Database Project
 - Upper limits of performance in database systems
 - Found bottleneck in writing transaction commit log
 - Needed greater I/O rates
- XPRS Project how to support an extensible database system on a "shared disk" multiprocessor architecture
 - Katz, Stonebreaker, and David A. Patterson
- 1986: Katz purchases an Apple MacPlus, possibly the first PC with SCSI connector
- 1987: Katz and Patterson begin research of large-scale multidisk storage systems
 - Reliability Garth Gibson (a graduate student) became expert on performance-reliability tradeoffs

THE BERKELEY RAIDERS

- Summer 1987: Patterson and Gibson attend disk technology course at Santa Clara University taught by Al Hoagland
 - Hoagland California Digital Computer Project (1951) worked with IBM to build RAMAC disk drive in 1956
- Fall 1987: Katz, Patterson, and Gibson begin developing taxonomy for RAID
 - Tandem Computers influence for "RAID 1"
 - Thinking Machines influence for "RAID 2"
 - Maxstor and Micropolis influence for "RAID 3"
 - IBM influence for "RAID 4" and "RAID 5"
- November 1987: send A Case for Redundant Array of Inexpensive Disks (RAID) to reviewers including Hoagland
- The report goes viral within the storage industry is officially published in May 1988

RAID 5 AND 6 STRIPING WITH PARITY

- Striping dividing a body of data into blocks and spreading those blocks across multiple storage devices
- Parity technique that checks whether data has been lost or written over when it is moved from one place in storage to another or when it is transmitted between computers
- Parity bit sometimes referred to as a check bit, is used to identify whether the moved bits arrived successfully. Also used to rebuild data after a drive failure

STRIPING CONFIGURATION

- Bits -0, 1
- Bytes 01101000
- Blocks "size on disk"
- Chunks abstract; amount of data that an application processes from a disk at a time
- Block and Stripe size is determined by RAID Controller

PARITY - EXCLUSIVE/OR (XOR)

• A computer processing function that produces a parity bit based on the sequence of 1s and 0s

TRADEOFFS

- "Fast, cheap, good: choose two"
- Capacity
- Performance
- Cost
- Reliability (Fault Tolerance)

• Cinema Studies Archive

- QNAP NAS
- RAID 6
- 6-Bay 3 TB/drive
- HGST Drives
- Kathy thinks drives were installed in 2014
- Software is browser based

IndieCollect

- Synology Server
- RAID 6
- 12-Bay 10 TB/drive
- 10 GB Ethernet connection

	DAID 6	DAID 5
FEATURES	RAID 6	RAID 5
Diagram	RAID 6 Parity Generator Parity Generator Requires a minimum of four drives. Pn and Qn represent two sets of parity.	RAID 5 Parity Generator P1 P2 P3 P4 P1 P3 P4 P1 P3 P4 P1 P4 P5 P7 P4 P7 P4 P7 P4 P7 P4 P7 P4 P7 P4 P7
Minimum # of Drives	4	3
Data Protection	Two drive failure	Single drive failure
Read Performance	High	High
Write Performance	Low	Low
Read Performance (Degraded)	Low	Low
Write Performance (Degraded)	Low	Low
Capacity Utilization	50% - 88%	67% - 94%
Typical Applications	Data Archive, Backup to Disk, High Availability Solutions, Web Servers, Servers With Large Capacity Requirements	Data Warehousing, Web Serving, Archiving

RAID VS. OBJECT-BASED STORAGE

OBJECT-BASED STORAGE

- Data stored as individual object rather than in a hierarchical file system
- Each object is assigned a unique identifier
- No limit on type or amount of metadata
- Erasure Coding (Polynomial Oversampling)

facebook

