Dynamic Pricing and Inventory Management under Inventory-Dependent-Demand

Nan Yang and Philip (Renyu) Zhang

Olin School of Business
Washington University in St. Louis

October 15, 2012
Outline

Motivation and Introduction
Outline

Motivation and Introduction

Literature Review
Outline

Motivation and Introduction

Literature Review

Model Formulation
Outline

Motivation and Introduction

Literature Review

Model Formulation

Main Results and Managerial Implications
OUTLINE

Motivation and Introduction

Literature Review

Model Formulation

Main Results and Managerial Implications

Q&A
Motivation
Motivation

- Campus Cafés, dispose leftover coffee and bread every day.
Motivation

- Campus Cafés, dispose leftover coffee and bread every day.

- BMW Mini Cooper, deliberately limits its annual sales to 25,000, and the average wait time is 2.5 months (New York Times, 2006).
Motivation

- Campus Cafés, dispose leftover coffee and bread every day.

- BMW Mini Cooper, deliberately limits its annual sales to 25,000, and the average wait time is 2.5 months (New York Times, 2006).

- Apple iPad, limits customers to two iPads per order in online sales (CBS News, 2010).
Motivation

- Campus Cafés, dispose leftover coffee and bread every day.

- BMW Mini Cooper, deliberately limits its annual sales to 25,000, and the average wait time is 2.5 months (New York Times, 2006).

- Apple iPad, limits customers to two iPads per order in online sales (CBS News, 2010).
Impact of Inventory on Demand

Operations objective: avoid excessive inventory.

Drawbacks of high inventory levels:
- Poor turnover (sales = inventory).
- Significant purchasing holding and managing costs.
- Investment opportunity lost.
- Potential demand depressed.

Excessive inventory is an implicit negative indicator of the product's quality, popularity and freshness.

Future demand is negatively correlated with excessive inventory levels.
Impact of Inventory on Demand

- Operations objective: avoid excessive inventory.

Drawbacks of high inventory levels:
- Poor turnover (sales = inventory).
- Significant purchasing holding and managing costs.
- Investment opportunity lost.
- Potential demand depressed.

Excessive inventory is an implicit negative indicator of the product’s quality, popularity and freshness.

Future demand is negatively correlated with excessive inventory levels.
Impact of Inventory on Demand

- Operations objective: avoid excessive inventory.

- Drawbacks of high inventory levels:
 - Poor turnover (sales/inventory).
 - Significant purchasing holding and managing costs.
 - Investment opportunity lost.
Impact of Inventory on Demand

- Operations objective: avoid excessive inventory.

- Drawbacks of high inventory levels:
 - Poor turnover ($sales/inventory$).
 - Significant purchasing holding and managing costs.
 - Investment opportunity lost.
 - Potential demand depressed.
Impact of Inventory on Demand

- Operations objective: avoid excessive inventory.

- Drawbacks of high inventory levels:
 - Poor turnover (sales/inventory).
 - Significant purchasing holding and managing costs.
 - Investment opportunity lost.
 - Potential demand depressed.

- Excessive inventory is an implicit negative indicator of the product’s quality, popularity and freshness.
Impact of Inventory on Demand

- Operations objective: avoid excessive inventory.

- Drawbacks of high inventory levels:
 - Poor turnover \((sales/inventory)\).
 - Significant purchasing holding and managing costs.
 - Investment opportunity lost.
 - Potential demand depressed.

- Excessive inventory is an implicit negative indicator of the product’s quality, popularity and freshness.

- Future demand is negatively correlated with excessive inventory levels.
Motivating Research Questions

I What is the structure of the optimal price and inventory policy under inventory-dependent-demand?

I How will inventory-dependent-demand influence the optimal policy?

I How will the flexibility in pricing and inventory disposal impact the optimal policy and the performance of the system?
Motivating Research Questions

- What is the structure of the optimal price and inventory policy under inventory-dependent-demand?

- How inventory-dependent-demand will influence the optimal policy?

- How will the flexibility in pricing and inventory disposal impact the optimal policy and the performance of the system?
Motivating Research Questions

- What is the structure of the optimal price and inventory policy under inventory-dependent-demand?

- How inventory-dependent-demand will influence the optimal policy?
Motivating Research Questions

- What is the structure of the optimal price and inventory policy under inventory-dependent-demand?

- How inventory-dependent-demand will influence the optimal policy?

- How will the flexibility in pricing and inventory disposal impact the optimal policy and the performance of the system?
Benefit of Dynamic Pricing

I Dynamic pricing is most effective for perishable products and products facing high demand and/or supply variability.

I Inventory-Dependent-Demand amplifies the demand volatility.

I Effective price adjustments can help stabilize the inventory levels, thus reducing the demand variability.
Benefit of Dynamic Pricing

- Dynamic pricing is most effective for perishable products and products facing high demand and/or supply variability.
Benefit of Dynamic Pricing

- Dynamic pricing is most effective for perishable products and products facing high demand and/or supply variability.

- Inventory-Dependent-Demand amplifies the demand volatility.
Benefit of Dynamic Pricing

- Dynamic pricing is most effective for perishable products and products facing high demand and/or supply variability.

- Inventory-Dependent-Demand amplifies the demand volatility.

- Effective price adjustments can help stabilize the inventory levels, thus reducing the demand variability.
Benefit of Inventory Disposal

Inventory disposal is an efficient way to liquidate surplus assets and reduce inventory holding and managing costs. Potential demand loss caused by high excessive inventory levels is also saved. Inventory disposal controls both the supply (service level) and demand (inventory-dependent-demand) sides of the story.
Benefit of Inventory Disposal

- Inventory disposal is an efficient way to liquidate surplus asset and reduce inventory holding and managing costs.
Benefit of Inventory Disposal

- Inventory disposal is an efficient way to liquidate surplus asset and reduce inventory holding and managing costs.

- Potential demand loss caused by high excessive inventory levels is also saved.
Benefit of Inventory Disposal

- Inventory disposal is an efficient way to liquidate surplus asset and reduce inventory holding and managing costs.

- Potential demand loss caused by high excessive inventory levels is also saved.

- Inventory disposal controls both the supply (service level) and demand (inventory-dependent-demand) sides of the story.
Literature Review

Inventory dependent demand:
- Gerchak and Wang (1994),
- Urban (2005),
- Sapra et al. (2010).

Dynamic pricing under stochastic demand:
- Federgruen and Heching (1999),
- Chen and Simchi-Levi (2004 a,b, 2006).

Joint price & inventory control under inventory-dependent demand:
- Dana and Petruzzi (2001),
- Balakrishnan et al. (2008).

Our paper: Dynamic pricing and inventory control & stochastic demand negatively correlated with inventory.
Literature Review

- Inventory dependent demand:
 - Gerchak and Wang (1994),
 - Urban (2005),
 - Sapra et al. (2010).
- Dynamic pricing under stochastic demand:
 - Federgruen and Heching (1999),
 - Chen and Simchi-Levi (2004 a,b, 2006).
- Joint price & inventory control under inventory-dependent demand:
 - Dana and Petruzzi (2001),
 - Balakrishnan et al. (2008).
- Our paper: Dynamic pricing and inventory control & stochastic demand negatively correlated with inventory.
Literature Review

- Inventory dependent demand:
 - Gerchak and Wang (1994),
 - Urban (2005),
 - Sapra et al. (2010).

- Dynamic pricing under stochastic demand:
 - Federgruen and Heching (1999),
 - Chen and Simchi-Levi (2004 a,b, 2006).

Joint price & inventory control under inventory-dependent demand:
- Dana and Petruzzi (2001),
- Balakrishnan et al. (2008).

Our paper: Dynamic pricing and inventory control & stochastic demand negatively correlated with inventory.
Literature Review

- **Inventory dependent demand:**
 - Gerchak and Wang (1994),
 - Urban (2005),
 - Sapra et al. (2010).

- **Dynamic pricing under stochastic demand:**
 - Federgruen and Heching (1999),
 - Chen and Simchi-Levi (2004 a,b, 2006).

- **Joint price & inventory control under inventory-dependent demand:**
 - Dana and Petruzzi (2001),
 - Balakrishnan et al. (2008).
Literature Review

- Inventory dependent demand:
 - Gerchak and Wang (1994),
 - Urban (2005),
 - Sapra et al. (2010).

- Dynamic pricing under stochastic demand:
 - Federgruen and Heching (1999),
 - Chen and Simchi-Levi (2004 a,b, 2006).

- Joint price & inventory control under inventory-dependent demand:
 - Dana and Petruzzi (2001),
 - Balakrishnan et al. (2008).

- Our paper: Dynamic pricing and inventory control & stochastic demand negatively correlated with inventory.
Literature Review

- Inventory dependent demand:
 - Gerchak and Wang (1994),
 - Urban (2005),
 - Sapra et al. (2010).

- Dynamic pricing under stochastic demand:
 - Federgruen and Heching (1999),
 - Chen and Simchi-Levi (2004 a,b, 2006).

- Joint price & inventory control under inventory-dependent demand:
 - Dana and Petruzzi (2001),
 - Balakrishnan et al. (2008).

- Our paper: Dynamic pricing and inventory control & stochastic demand negatively correlated with inventory.
Models

We develop the following dynamic programming models to investigate the inventory-dependent-demand.

Model (1): perishable products.

Model (2): nonperishable products, without inventory disposal.

Model (3): nonperishable products, with inventory disposal.
We develop the following dynamic programming models to investigate the inventory-dependent-demand.
We develop the following dynamic programming models to investigate the inventory-dependent-demand.

- **Model (1):** perishable products.

- **Model (2):** nonperishable products, without inventory disposal.

- **Model (3):** nonperishable products, with inventory disposal.
We develop the following dynamic programming models to investigate the inventory-dependent-demand.

- **Model (1):** perishable products.

- **Model (2):** nonperishable products, without inventory disposal.
Models

We develop the following dynamic programming models to investigate the inventory-dependent-demand.

- **Model (1):** perishable products.
- **Model (2):** nonperishable products, without inventory disposal.
- **Model (3):** nonperishable products, with inventory disposal.
Models

We develop the following dynamic programming models to investigate the inventory-dependent-demand.

- **Model (1):** perishable products.
- **Model (2):** nonperishable products, without inventory disposal.
- **Model (3):** nonperishable products, with inventory disposal.
Notations and Assumptions

I periods in total, labeled backwards, full backorder.

It = the price set in period t.

pt is the optimal price.

c = the unit procurement cost.

It = the inventory level at the beginning of period t before replenishment.

xt = the inventory level in period t after replenishment before demand realization.

xt is the optimal service level.

D = \delta (pt, It, ϵ_t) = the random demand in period t, strictly decreasing in pt, decreasing in It.

ϵ_t is a random vector.

α = discount factor.
Notations and Assumptions

- T periods in total, labeled backwards, full backorder.

- $p_t =$ the price set in period t. p_t^* is the optimal price. $c =$ the unit procurement cost.

- $I_t =$ the inventory level at the beginning of period t before replenishment.

- $x_t =$ the inventory level in period t after replenishment before demand realization. x_t^* is the optimal service level. Zero leadtime.

- $D_t = \delta(p_t, I_t, \epsilon_t) =$ the random demand in period t, strictly decreasing in p_t, decreasing in I_t. ϵ_t is a random vector.

- $\alpha =$ discount factor.
Notations and Assumptions

- T periods in total, labeled backwards, full backorder.

- $p_t =$ the price set in period t. p_t^* is the optimal price. $c =$ the unit procurement cost.

- $I_t =$ the inventory level at the beginning of period t before replenishment.

- $x_t =$ the inventory level in period t after replenishment before demand realization. x_t^* is the optimal service level. Zero leadtime.

- $D_t = \delta(p_t, I_t, \epsilon_t) =$ the random demand in period t, strictly decreasing in p_t, decreasing in I_t. ϵ_t is a random vector.

- $\alpha =$ discount factor.
Model (1): Sequence of Events

In model (1), \(I_t \) is the inventory level at the end of period \(t+1 \), which is not usable but has impact on \(D_t \).

The sequence of events in period \(t \):

- Observes \(I_t \)
- Decides \((x_t, p_t)\)
- \(D_t \) realized

Period \(t \) starts
Period \(t-1 \) starts

Excessive demand costs \(\beta > c \) per unit.

\(I_t = x_t D_t \) perishes but has impact on \(D_t \).

\(V_P(t(I_t)) = \) the optimal expected profit to go with inventory level \(I_t \).
Model (1): Sequence of Events

- In model (1), \(l_t \) is the inventory level at the end of period \(t + 1 \), which is not usable but has impact on \(D_t \). \(x_t \geq 0 \).
Model (1): Sequence of Events

- In model (1), \(l_t \) is the inventory level at the end of period \(t + 1 \), which is not usable but has impact on \(D_t \). \(x_t \geq 0 \).

- The sequence of events in period \(t \):

 - Period \(t \) starts
 - Observes \(I_t \)
 - Decides \((x_t, p_t) \)
 - \(D_t \) realized
 - Period \(t - 1 \) starts
Model (1): Sequence of Events

- In model (1), I_t is the inventory level at the end of period $t + 1$, which is not usable but has impact on D_t. $x_t \geq 0$.

- The sequence of events in period t:

 - Period t starts
 - Observes I_t
 - Decides (x_t, p_t)
 - D_t realized
 - Period $t - 1$ starts

- Excessive demand costs $\beta(> c)$ per unit.
Model (1): Sequence of Events

- In model (1), I_t is the inventory level at the end of period $t + 1$, which is not usable but has impact on D_t. $x_t \geq 0$.

- The sequence of events in period t:

 ![Sequence of Events Diagram]

 Period t starts

 Observes I_t

 Decides (x_t, p_t)

 D_t realized

 Period $t - 1$ starts

- Excessive demand costs $\beta(> c)$ per unit.

- $I_{t-1} = x_t - D_t$ perishes but has impact on D_{t-1}.
Model (1): Sequence of Events

- In model (1), \(l_t \) is the inventory level at the end of period \(t + 1 \), which is not usable but has impact on \(D_t \). \(x_t \geq 0 \).

- The sequence of events in period \(t \):

 - Observes \(I_t \)
 - Decides \((x_t, p_t)\)
 - \(D_t \) realized
 - Period \(t \) starts
 - Period \(t - 1 \) starts

- Excessive demand costs \(\beta(>c) \) per unit.

- \(l_{t-1} = x_t - D_t \) perishes but has impact on \(D_{t-1} \).

- \(V_t(I_t) = \text{the optimal expected profit to go with inventory level } l_t \).
Model (1): Sequence of Events

- In model (1), I_t is the inventory level at the end of period $t + 1$, which is not usable but has impact on D_t. $x_t \geq 0$.

- The sequence of events in period t:

- Observes I_t
- Decides (x_t, p_t)
- D_t realized
- Period t starts
- Period $t - 1$ starts

- Excessive demand costs $\beta(> c)$ per unit.

- $I_{t-1} = x_t - D_t$ perishes but has impact on D_{t-1}.

- $V_t^P (I_t)$ = the optimal expected profit to go with inventory level I_t.
Model (1): Optimality Equation
Model (1): Optimality Equation

\[V_t^P(l_t) = \max_{x_t, p_t} \mathbb{E}\{p_t D_t - c x_t - \beta (x_t - D_t)^- + \alpha V_{t-1}^P(x_t - D_t)\} . \]

\[V_0^P(l_0) = 0. \]
Model (1): Optimality Equation

\[V_t^P(I_t) = \max_{x_t,p_t} \mathbb{E}\{p_t D_t - c x_t - \beta(x_t - D_t)^- + \alpha V_{t-1}^P(x_t - D_t)\} \]

\[V_0^P(I_0) = 0. \]

- \(p_t D_t \) = revenue in period \(t \).
- \(c x_t \) = procurement cost in period \(t \).
- \(\beta(x_t - D_t)^- \) = penalty incurred by excessive demand in period \(t \).
- \(\alpha V_{t-1}^P(x_t - D_t) \) = the profit in later periods.
Model (1): Optimality Equation

\[V_t^P(I_t) = \max_{x_t, p_t} E\{ p_t D_t - c x_t - \beta (x_t - D_t)^- + \alpha V_{t-1}^P(x_t - D_t) \} . \]

\[V_0^P(I_0) = 0. \]

- \(p_t D_t \) = revenue in period \(t \).

- \(c x_t \) = procurement cost in period \(t \).

- \(\beta (x_t - D_t)^- \) = penalty incurred by excessive demand in period \(t \).

- \(\alpha V_{t-1}^P(x_t - D_t) \) = the profit in later periods.
Model (2): Sequence of Events

In model (2), \(I_t \) is the inventory level at the beginning of period \(t \), which is usable and has impact on \(D_t \). The sequence of events in period \(t \):

1. Observes \(I_t \)
2. Decides \((x_t, p_t)\)
3. \(D_t \) realized

Period \(t \) starts, Period \(t - 1 \) starts

- Procurement cost: \(c(x_t, I_t) \).

- \(I_t = x_t D_t \), which incurs cost: \(h I_t + t_1 + b I_t t_1 \).

\(VND_t(I_t) = \) the optimal expected profit to go with inventory level \(I_t \).
In model (2), I_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. $x_t \geq I_t$
Model (2): Sequence of Events

- In model (2), I_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. $x_t \geq I_t$

- The sequence of events in period t:

 - Observes I_t
 - Period t starts
 - Decides (x_t, p_t)
 - D_t realized
 - Period $t - 1$ starts
Model (2): Sequence of Events

- In model (2), I_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. $x_t \geq I_t$

- The sequence of events in period t:

 - Observes I_t
 - Period t starts
 - Decides (x_t, p_t)
 - D_t realized
 - Period $t - 1$ starts

- Procurement cost: $c(x_t - I_t)$.
Model (2): Sequence of Events

- In model (2), \(I_t \) is the inventory level at the beginning of period \(t \), which is usable and has impact on \(D_t \). \(x_t \geq I_t \)

- The sequence of events in period \(t \):

 - Observes \(I_t \)
 - Period \(t \) starts
 - Decides \((x_t, p_t) \)
 - \(D_t \) realized
 - Period \(t - 1 \) starts

- Procurement cost: \(c(x_t - I_t) \).

- \(l_{t-1} = x_t - D_t \), which incurs cost: \(hI_{t-1}^+ + bI_{t-1}^- \).
Model (2): Sequence of Events

- In model (2), l_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. $x_t \geq l_t$

- The sequence of events in period t:
 - Observes I_t
 - Decides (x_t, p_t)
 - D_t realized
 - Period t starts
 - Period $t - 1$ starts

- Procurement cost: $c(x_t - l_t)$.

- $l_{t-1} = x_t - D_t$, which incurs cost: $hl_{t-1}^+ + bl_{t-1}^-$.

- $V_t^{ND}(l_t) =$ the optimal expected profit to go with inventory level l_t.

\[V_t^{ND}(l_t) = \text{the optimal expected profit to go with inventory level } l_t. \]
Model (2): Sequence of Events

- In model (2), I_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. $x_t \geq I_t$

- The sequence of events in period t:
 - Observes I_t
 - Period t starts
 - Decides (x_t, p_t)
 - D_t realized
 - Period $t - 1$ starts

- Procurement cost: $c(x_t - I_t)$.

- $I_{t-1} = x_t - D_t$, which incurs cost: $hl_{t-1}^+ + bl_{t-1}^-$.

- $V_{t}^{ND}(I_t) =$ the optimal expected profit to go with inventory level I_t.
Model (2): Optimality Equation

\[V_t^{ND}(l_t) = \max_{x_t \geq l_t, p_t} \mathbb{E}\{p_tD_t - c(x_t - l_t) - h(x_t - D_t)^+ - b(x_t - D_t)^- \} + \alpha V_t^{ND}(x_t - D_t) \} \]

\[V_0^{ND}(l_0) = -cl_0^- + sl_0^+ . \]
Model (2): Optimality Equation

\[V_{t}^{ND}(l_{t}) = \max_{x_{t} \geq l_{t}, p_{t}} \mathbb{E}\{p_{t}D_{t} - c(x_{t} - l_{t}) - h(x_{t} - D_{t})^{+} - b(x_{t} - D_{t})^{-} \}
\]
\[+ \alpha V_{t-1}^{ND}(x_{t} - D_{t}) \}.
\]
\[V_{0}^{ND}(l_{0}) = -cl_{0}^{-} + sl_{0}^{+}.
\]

- \(p_{t}D_{t} \) = revenue in period \(t \).
- \(c(x_{t} - l_{t}) \) = procurement cost in period \(t \).
- \(h(x_{t} - D_{t})^{+} + b(x_{t} - D_{t})^{-} \) = operational cost in period \(t \).
- \(\alpha V_{t-1}^{ND}(x_{t} - D_{t}) \) = the profit in later periods.
Model (2): Optimality Equation

\[V_t^{ND}(l_t) = \max_{x_t \geq l_t, p_t} E \{ p_t D_t - c(x_t - l_t) - h(x_t - D_t)^+ - b(x_t - D_t)^- \}
+ \alpha V_{t-1}^{ND}(x_t - D_t) \}. \]

\[V_0^{ND}(l_0) = -c l_0^- + s l_0^+. \]

- \(p_t D_t \) = revenue in period \(t \).
- \(c(x_t - l_t) \) = procurement cost in period \(t \).
- \(h(x_t - D_t)^+ + b(x_t - D_t)^- \) = operational cost in period \(t \).
- \(\alpha V_{t-1}^{ND}(x_t - D_t) \) = the profit in later periods.
Model (3): Sequence of Events

In model (3), I_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. x_t is the decision to purchase in period t.

The sequence of events in period t:

- Observes I_t
- Decides (x_t, p_t)
- D_t realized

Period t starts

I_t = x_t and D_t, which incurs cost: $hI_t + t_1 + bI_t$.

$V_t(I_t)$ = the optimal expected profit to go with inventory level I_t.

Salvage value less procurement cost: $s(x_t, I_t) - c(x_t, I_t) + I_t$.
Model (3): Sequence of Events

- In model (3), l_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. $x_t \geq \min\{0, l_t\}$.
Model (3): Sequence of Events

- In model (3), I_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. $x_t \geq \min\{0, I_t\}$.

- The sequence of events in period t:

 1. Observes I_t
 2. Decides (x_t, p_t)
 3. D_t realized
 4. Period $t - 1$ starts
Model (3): Sequence of Events

- In model (3), \(I_t \) is the inventory level at the beginning of period \(t \), which is usable and has impact on \(D_t \). \(x_t \geq \min\{0, I_t\} \).

- The sequence of events in period \(t \):
 - Period \(t \) starts
 - Observes \(I_t \)
 - Decides \((x_t, p_t)\)
 - \(D_t \) realized
 - Period \(t - 1 \) starts

- Salvage value less procurement cost: \(s(x_t - I_t)^- - c(x_t - I_t)^+ \).
Model (3): Sequence of Events

- In model (3), I_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. $x_t \geq \min\{0, I_t\}$.

- The sequence of events in period t:
 - Period t starts
 - Observes I_t
 - Decides (x_t, p_t)
 - D_t realized
 - Period $t - 1$ starts

- Salvage value less procurement cost: $s(x_t - I_t)^- - c(x_t - I_t)^+$.

- $I_{t-1} = x_t - D_t$, which incurs cost: $hl_{t-1}^+ + bl_{t-1}^-$.
Model (3): Sequence of Events

- In model (3), I_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. $x_t \geq \min\{0, I_t\}$.

- The sequence of events in period t:

- Observes I_t
- Decides (x_t, p_t)
- D_t realized
- Period t starts
- Period $t - 1$ starts

- Salvage value less procurement cost: $s(x_t - I_t)^- - c(x_t - I_t)^+$.

- $I_{t-1} = x_t - D_t$, which incurs cost: $hI_{t-1}^+ + bI_{t-1}^-$.

- $V_t(I_t) =$ the optimal expected profit to go with inventory level I_t.
Model (3): Sequence of Events

- In model (3), I_t is the inventory level at the beginning of period t, which is usable and has impact on D_t. $x_t \geq \min\{0, I_t\}$.

- The sequence of events in period t:
 - Observes I_t
 - Decides (x_t, p_t)
 - D_t realized
 - Period t starts
 - Period $t - 1$ starts

- Salvage value less procurement cost: $s(x_t - I_t)^- - c(x_t - I_t)^+$.

- $I_{t-1} = x_t - D_t$, which incurs cost: $hl_{t-1}^+ + bl_{t-1}^-$.

- $V_t(I_t) =$the optimal expected profit to go with inventory level I_t.

Model (3): Optimality Equation

\[V_t(I_t) = \max_{x_t} \min_{\ell_t} f_0; I_t g; p_t E p_t D_t c(x_t I_t) + s(x_t I_t) + h(x_t D_t) + b(x_t D_t) + \alpha V ND_t. \]

\[V_0(I_0) = cI_0 + sI_0. \]

\[I_p t D_t = \text{revenue in period } t. \]

\[I_c(x_t I_t) / s(x_t I_t) = \text{procurement cost/salvage value}. \]

\[I_h(x_t D_t) + b(x_t D_t) = \text{operational cost in period } t. \]

\[I_\alpha V t (x_t D_t) = \text{the profit in later periods}. \]
Model (3): Optimality Equation

\[V_t(l_t) = \max_{x_t \geq \min\{0, l_t\}, p_t} \mathbb{E}\{ p_t D_t - c(x_t - l_t)^+ + s(x_t - l_t)^- - h(x_t - D_t)^+ - b(x_t - D_t)^- + \alpha V_{t-1}^{ND}(x_t - D_t) \} \]

\[V_0(l_0) = -c l_0^- + s l_0^+. \]
Model (3): Optimality Equation

\[V_t(I_t) = \max_{x_t \geq \min\{0, I_t\}, p_t} \mathbb{E}\{p_tD_t - c(x_t - I_t)^+ + s(x_t - I_t)^- - h(x_t - D_t)^+ - b(x_t - D_t)^- + \alpha V_{t-1}^{ND}(x_t - D_t)\} \]

\[V_0(I_0) = -cI_0^- + sI_0^+ . \]

- \(p_tD_t \) = revenue in period \(t \).
- \(c(x_t - I_t)^+/s(x_t - I_t)^- \) = procurement cost/salvage value.
- \(h(x_t - D_t)^+ + b(x_t - D_t)^- \) = operational cost in period \(t \).
- \(\alpha V_{t-1}(x_t - D_t) \) = the profit in later periods.
Model (3): Optimality Equation

\[
V_t(I_t) = \max_{x_t \geq \min\{0, I_t\}, p_t} \mathbb{E}\{p_t D_t - c(x_t - I_t)^+ + s(x_t - I_t)^- - h(x_t - D_t)^+ - b(x_t - D_t)^- + \alpha V_{t-1}^{ND}(x_t - D_t)\}.
\]

\[
V_0(I_0) = -cl_0^- + sl_0^+.
\]

- \(p_t D_t\) = revenue in period \(t\).
- \(c(x_t - I_t)^+ / s(x_t - I_t)^-\) = procurement cost/salvage value.
- \(h(x_t - D_t)^+ + b(x_t - D_t)^-\) = operational cost in period \(t\).
- \(\alpha V_{t-1}(x_t - D_t)\) = the profit in later periods.
Main Results (Model 3)

I Inventory-dependent order-up-to/dispose-down-to list-price policy.

DisposeKeepOrder

It

Lt

It

Itp, xt, Lt and It are lower with inventory-dependent-demand.

Itp, xt, Lt and It are higher with inventory-disposal opportunity.

The benefits of dynamic pricing and inventory disposal (in profit) are as high as 1/3 (numerical).

When the wait-list effect is strong enough, Lt < It = 0.
Main Results (Model 3)

- Inventory-dependent order-up-to/dispose-down-to list-price policy.

\[I_t^L \rightarrow I_t^H \rightarrow I_t \]

Order Keep Dispose

The benefits of dynamic pricing and inventory disposal (in profit) are as high as \(\frac{1}{3} \) (numerical).

When the wait-list effect is strong enough, \(I_t^L < I_t^H = 0 \).
Main Results (Model 3)

- Inventory-dependent order-up-to/dispose-down-to list-price policy.

- p_t^*, x_t^*, I_t^L and I_t^H are lower with inventory-dependent-demand.
Main Results (Model 3)

- Inventory-dependent order-up-to/dispose-down-to list-price policy.

\[I_t^L \quad I_t^H \quad I_t \]

Order \quad Keep \quad Dispose

- \(p_t^*, x_t^*, I_t^L \) and \(I_t^H \) are lower with inventory-dependent-demand.

- \(p_t^*, x_t^*, I_t^L \) and \(I_t^H \) are higher with inventory-disposal opportunity.
Main Results (Model 3)

- Inventory-dependent order-up-to/dispose-down-to list-price policy.

- \(p_t^*, x_t^*, I_t^L \) and \(I_t^H \) are lower with inventory-dependent-demand.

- \(p_t^*, x_t^*, I_t^L \) and \(I_t^H \) are higher with inventory-disposal opportunity.

- The benefits of dynamic pricing and inventory disposal (in profit) are as high as \(1/3 \) (numerical).
Main Results (Model 3)

- Inventory-dependent order-up-to/dispose-down-to list-price policy.

- p_t^*, x_t^*, I_t^L and I_t^H are lower with inventory-dependent-demand.

- p_t^*, x_t^*, I_t^L and I_t^H are higher with inventory-disposal opportunity.

- The benefits of dynamic pricing and inventory disposal (in profit) are as high as 1/3 (numerical).

- When the wait-list effect is strong enough, $I_t^L < I_t^H = 0$.
Main Results (Model 3)

- Inventory-dependent order-up-to/dispose-down-to list-price policy.

- p_t^*, x_t^*, I_t^L and I_t^H are lower with inventory-dependent-demand.

- p_t^*, x_t^*, I_t^L and I_t^H are higher with inventory-disposal opportunity.

- The benefits of dynamic pricing and inventory disposal (in profit) are as high as $1/3$ (numerical).

- When the wait-list effect is strong enough, $I_t^L < I_t^H = 0$.
Managerial Insights and Implications

- Inventory-dependent-demand strengthens overstocking risk by depressing potential demand.
Managerial Insights and Implications

- Inventory-dependent-demand strengthens overstocking risk by depressing potential demand.

- Price and operational flexibility helps mitigate demand loss driven by high inventory levels.

Suggestions:
- Never ignore inventory-dependent-demand.
- Limit order quantity.
- Decrease sales price.
- Dispose unnecessary inventory (campus cafe).
- Take advantage of the wait-list effect (BMW and Apple).
Managerial Insights and Implications

- Inventory-dependent-demand strengthens overstocking risk by depressing potential demand.

- Price and operational flexibility helps mitigate demand loss driven by high inventory levels.

- Suggestions:
 - Never ignore inventory-dependent-demand.
 - Limit order quantity.
 - Decrease sales price.
 - Dispose unnecessary inventory (campus café).
 - Take advantage of the wait-list effect (BMW and Apple).
Managerial Insights and Implications

- Inventory-dependent-demand strengthens overstocking risk by depressing potential demand.

- Price and operational flexibility helps mitigate demand loss driven by high inventory levels.

Suggestions:
- Never ignore inventory-dependent-demand.
- Limit order quantity.
- Decrease sales price.
- Dispose unnecessary inventory (campus café).
- Take advantage of the wait-list effect (BMW and Apple).
Thank you!

Questions?