Seto vowel harmony and neutral vowels

Samuel R. Bowman
Department of Linguistics, Stanford University

A positive vowel harmony imperative generates real phenomena other approaches don’t.

Seto’s (Finno-Ugric, Estonia) harmonically paired neutral vowels break most approaches to harmony. I show that, with some additions, Kimper’s new framework for harmony captures the language cleanly using non-local feature spreading combined with the notion of trigger strength.

Seto vowel harmony

• Kiparsky and Pajusalu (2001): Seto (Finno-Ugric, Estonia) has progressive front-back harmony.

• Stress: word initial.

• No prefixes.

• These harmonic alternations:
 /ü/–/u/ /ö/–/o/ /ä/–/a/ /e/–/ə /

• Three neutral vowels:
 /ü/ transparent to harmony in all contexts, but paired with /i/ word initially.
 /a/ transparent to harmony word initially, paired with /i/ word initially and /a/ elsewhere.
 /ə/ blocks harmony all contexts and triggers back harmony, paired with /i/ word initially.

• Sample front-back alternations:
 nøña-ʻt-ta-nu ʻi ʻukʼed (Pp.) – nøn-ˈtu-ta-nu ʻi ʻukʼed (Pp.)
 tůt-tre-kene ʻihn ʻañne (dim.) – maana-kana ʻihn ʻañne (dim.)
 kivs-bal ‘a taltel – lišni-bal ‘a taltel
 isəis-bal ‘a taltel – lišni-bal ‘a taltel

• Stems containing only transparent vowels always select front suffixes.

• Both common approaches to transparent vowels fail for Seto:
 • Unpaired transparent vowels are underspecified for the harmonic feature and underspecified segments are immune to harmony (Clements, 1976; Kiparsky, 1981; Archangeli and Pulleyblank, 1994; Ringen and Vago, 1998).
 • Harmony creates back-harmonic tokens of front transparent vowels but later neutralization reverses them to their original front value (Bach, 1968; Clements, 1976; Walker, 1998; Bakovic and Wilson, 2000).

• Neither works: The three neutral vowels must all contrast for (Biax).

• The model should not require paired neutral vowels: Related languages Votic and Veps have similar systems with unpaired neutral vowels.

Trigger Competition and Spread

• Trigger Competition (Kimper, 2011) is a new framework for vowel harmony.

• Autosegmental representation which permits crossing lines:
 \[\begin{array}{c}
 \text{Parameter} \\
 \text{Value} \\
 \text{Distance [k]} \pm 0.4 \\
 \text{Linked Trigger [k]} \\
 \text{Direction} \\
 \text{Vowel qualities} \\
 \text{Height} \\
 \text{Width} \\
 \end{array} \]

• The trigger marked with an underline is a particular instance of spreading which provides the impetus for spreading.

• Spread[\(f\): For a feature \(f\), assign +1 for each segment linked to \(f\) as a dependent.

• Uses Serial Harmonic Grammar (Pater et al., 2008, Pater, 2010, Mullin, 2011): Constraints are weighted, and derivations proceed one step at a time.

• Multiplier parameters affect the reward assigned by Spread[\(f\):
 • The distance multiplier \(k\) is applied once for each unit of distance between trigger and target.
 • The trigger quality multipliers \(x[.]\) are applied to triggers with a particular vowel quality.

• Segment that cannot harmonize due to some basic markedness or faithfulness constraint, and are not strong enough to trigger harmony, are skipped and are transparent.

• Those that cannot harmonize, but are strong enough to trigger harmony, are opaque.

Seto in Trigger Competition

• Markedness constraints ban non-initial /i/ and /a/ prevent neutral vowels from alternating. Word-initial segments have no incentive to alternate.

• Long-distance spreading allows backness to spread past transparent vowels.

• Assigning a low trigger strength to the transparent vowels prevents them from spreading frontness (above right).

• A high trigger strength allows opaque /i/ to spread backness (below).

Conclusions and future work

The addition of new mechanisms for directionality and a new source of harmony triggers enables Trigger Competition to capture this difficult case neatly, and shows promise for variable-harmony cases like Hungarian vacillation.

Acknowledgements

I am indebted to Paul Kiparsky and Karl Pajusalu for providing these data, to Paul Kiparsky and Arto Antilla for their advice on this project, and to and Meaghan Sumner and the participants in Stanford’s PInterest workshop for their comments.

References

What can be a harmony trigger?

• Kimper: For any given target, the nearest segment linked to each feature value can be a trigger.

• Wrongly predicts that all transparent vowels are icy targets: Once a front vowel is linked to a transparent vowel, front harmony cannot spread further in (a).

• My proposal: The grammar can optionally allow for triggers that are already inside harmonic domains, as in (c).

How is directionality enforced?

• Kimper: Directionality is an open issue.

• My proposal has two pieces:
 • New direction parameter limits spreading from a trigger that is to the right (or left) of its target.
 • New constraint prevents harmony from starting anywhere but the start of the word—as in (a)—neutral vowels interfere:

Conclusions and future work

The addition of new mechanisms for directionality and a new source of harmony triggers enables Trigger Competition to capture this difficult case neatly, and shows promise for variable-harmony cases like Hungarian vacillation.

Questions? sbowman@stanford.edu