Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins

Nathaniel J. Traaseth a,c, Fa-An Chao a, Larry R. Masterson a, Silvia Mangia c, Michael Garwood c, Shalom Michaeli c, Burckhard Seelig a,d, Gianluigi Veglia a,b,*

a Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
b Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
c Department of Radiology (Center for Magnetic Resonance Research), University of Minnesota, Minneapolis, MN 55455, United States
d BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
* Corresponding author. Address: 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, United States. Fax: +1 612 625 2163.
E-mail address: veglia001@umn.edu (G. Veglia).

1. Introduction

Proteins exist as structural ensembles [1,2], whose conformational dynamics reflect a fine balance between the enthalpic and entropic contributions to the free energy. While enthalpy is relatively easy to access via thermocachromatic measurements, the estimate of conformational entropy is more difficult to obtain. Yet, the entropic contribution has been postulated to be the driving force for phenomena such as protein folding, ligand binding, cooperativity, and allostery. In the past decades, there has been an enormous effort to quantify the conformational entropy contribution to the overall entropy for enzymes [1–10]. NMR has an important niche in structural biology since it can give site-specific dynamic information in a non-invasive manner. Not only do NMR relaxation experiments reveal protein motions (dynamics) on a wide range of timescales from ps to ms [11–13], they do so from an atomic perspective for both protein backbone and sidechain nuclei [14]. In particular, the motions on the μs to ms timescale are receiving special attention since they often occur on the same timescale as catalysis and folding [15]. Remarkably, these motions dictate substrate recognition, ligand positioning within the active site, product release in enzymatic catalysis [1,7,8,16–19], and more recently have been directly linked to the chemical step of catalysis [20]. A fascinating aspect recently discovered is the possibility of converting the information derived from relaxation measurements to the characterization of excited states [21] (partially folded or under conformational strain) that are often responsible for the biological activity of soluble [5] and membrane-bound proteins [22–25]. Although always present in the NMR measurements, these states were previously undetected in simple analyses of NMR spectra.
2. Results

2.1. Effect of radio frequency amplitude in the HARD method

To analyze the effect of the RF field strength for the HARD method on biomolecules, we measured \(R_{1p} \) and \(R_{2p} \) relaxation rates at \(\omega_{\text{Rmax}}^\text{H}(2\pi) = 3.4 \) and 5 kHz maximal applied amplitude of the AFP pulses. The results are shown in Fig. 1. For all residues in ubiquitin, the dispersion in the range from 3 to 5 kHz is <1 s\(^{-1}\)). This shows that while the HARD method can accurately detect exchange, it is more sensitive when \(\omega_{\text{Rmax}}^\text{H}(2\pi) \approx 4 \) kHz.

2.2. Quantitative interpretation of dynamic parameters from adiabatic \(R_{1p} \) and \(R_{2p} \)

The dynamic parameters including \(k_{\text{ex}} (=1/\tau_{\text{ex}}) \) and \(\Delta\omega^2 p_{\text{pB}} \) were extracted by considering the averaged instantaneous contribution of the exchange throughout the course of AFP by integrating the expressions below [28]:

\[
R_{1p,ex} = \frac{1}{T_p} \int_0^T p_3 p_2 \Delta\omega^2 \sin^2(2\pi \tau_{\text{ex}}) \frac{\tau_{\text{ex}}}{1 + (\omega_{\text{eff}}(T_p) \omega_{\text{ex}})^2} dt
\]

\[
R_{2p,ex} = \frac{1}{T_p} \int_0^T p_3 p_2 \Delta\omega^2 \left[\cos^2(2\pi \tau_{\text{ex}}) + 1/2 \sin^2(2\pi \tau_{\text{ex}}) \right] \frac{\tau_{\text{ex}}}{1 + (\omega_{\text{eff}}(T_p) \omega_{\text{ex}})^2} dt
\]

where \(\Delta\omega \) is the chemical shift difference between magnetic sites A and B, \(\alpha \) is the angle between the effective frequency \((\omega_{\text{eff}}) \) and the B magnetic field, \(p_3 \) and \(p_2 \) are fractional populations for a two-site chemical exchange process, and \(T_p \) is the adiabatic full passage pulse length. Eqs. (1) and (2) were derived in the fast exchange regime [32], where the condition \(\omega_{\text{eff}} \approx 1 \) is well satisfied [34]. During the adiabatic full passage, both \(\alpha \) and \(\omega_{\text{ex}} \) are time dependent. To obtain only the contribution of the exchange term to the measured relaxation rate, we subtracted rates from residues that did not show chemical exchange from those that did [28]. This assumption relied on the fact that all the other contributions to the measured relaxation rate other than chemical exchange were the same. Auer et al. recently showed that the chemical shift anisotropy-dipole coupling (CSA-DD) cross-correlated relaxation rate was the most important factor when fitting adiabatic \(R_{1p} \) relaxation dispersion data [35]. Therefore to address our assumption, we measured these relaxation rates for ubiquitin [58]. As is shown in Supporting Information Fig. 1, the cross-relaxation rates for ubiquitin (outside of the termini) vary by ~1 s\(^{-1}\) across the primary sequence. This small difference is essentially outside the experimental error of the approach and suggests that in the case of ubiquitin CSA-DD cross-correlated relaxation can be neglected among different residues.

In order to determine whether a residue in ubiquitin has dispersion by our HARD method, we calculated \(\Delta R_{1p} \) (\(R_{1p,\text{HSS}} - R_{1p,\text{HSB}} \)) and \(\Delta R_{2p} \) (\(R_{2p,\text{HSS}} - R_{2p,\text{HSB}} \)) and plotted the results as a function of residue (Fig. 2). In the absence of exchange (or for exchange rates that are outside the detection limits) the \(\Delta R_{1p} \) and \(\Delta R_{2p} \) values will be similar for each residue. Those residues with greater than one standard deviation (excluding termini) were deemed to have anisochronous exchange (i.e., exchange between spins with different chemical shifts). To obtain only the chemical exchange relaxation contribution, the relaxation rates of non-exchanging adjacent residues were averaged and then subtracted from the exchanging residue. For example, to calculate the exchange contribution for Asn25, the \(R_{1p} \) and \(R_{2p} \) rates of residues 20, 21, 22, 26, 27, and 28 were first averaged and then subtracted from the observed rates measured for Asn25. This yielded data that contained only the exchange contribution that can be directly fit using Eqs. (1) and (2) to obtain \(k_{\text{ex}} \) and \(\Delta\omega^2 p_{\text{pB}} \). Using this approach, we report the fitted curves in Fig. 3 and the kinetic parameters in Table 1, which are in excellent agreement with those reported by Palmer and co-workers [36] and Griesinger and co-workers [44] for ubiquitin. This close agreement with literature values and the small
variance of the CSA/DD transverse cross-relaxation rates as a function of residue provides further support that the subtraction approach is an accurate way to determine the chemical exchange contribution in the HARD method.

2.3. Comparison of HARD method with CPMG relaxation dispersion

Ubiquitin is a good model sample for fast exchange rates, with $k_{\text{ex}} \sim 10^4 \text{s}^{-1}$ [28,36]. While the motions occurring on this timescale are important for catalysis and folding [3,4], slower timescales have been the subject of several studies aimed at measuring conformational exchange in signaling enzymes and other macromolecules [1,7,20,37–39]. For these experiments, CPMG-based R_2 experiments are typically employed, which are generally sensitive to exchange rate constants in the 10^2–10^4s^{-1} range. To better observe the trend, we have plotted the line graph of the same data in panels B (ΔR_{1p}) and D (ΔR_{2p}). As indicated in the legend, $v_{\text{max}}^\text{HS1}$ values of 3, 4, and 5 kHz correspond to blue, gray, and orange.

Ubiquitin is a good model sample for fast exchange rates, with $k_{\text{ex}} \sim 10^4 \text{s}^{-1}$ [28,36]. While the motions occurring on this timescale are important for catalysis and folding [3,4], slower timescales have been the subject of several studies aimed at measuring conformational exchange in signaling enzymes and other macromolecules [1,7,20,37–39]. For these experiments, CPMG-based R_2 experiments are typically employed, which are generally sensitive to exchange rate constants in the 10^2–10^4s^{-1} range. To better observe the trend, we have plotted the line graph of the same data in panels B (ΔR_{1p}) and D (ΔR_{2p}). As indicated in the legend, $v_{\text{max}}^\text{HS1}$ values of 3, 4, and 5 kHz correspond to blue, gray, and orange.

Ubiquitin is a good model sample for fast exchange rates, with $k_{\text{ex}} \sim 10^4 \text{s}^{-1}$ [28,36]. While the motions occurring on this timescale are important for catalysis and folding [3,4], slower timescales have been the subject of several studies aimed at measuring conformational exchange in signaling enzymes and other macromolecules [1,7,20,37–39]. For these experiments, CPMG-based R_2 experiments are typically employed, which are generally sensitive to exchange rate constants in the 10^2–10^4s^{-1} range. To better observe the trend, we have plotted the line graph of the same data in panels B (ΔR_{1p}) and D (ΔR_{2p}). As indicated in the legend, $v_{\text{max}}^\text{HS1}$ values of 3, 4, and 5 kHz correspond to blue, gray, and orange.

Ubiquitin is a good model sample for fast exchange rates, with $k_{\text{ex}} \sim 10^4 \text{s}^{-1}$ [28,36]. While the motions occurring on this timescale are important for catalysis and folding [3,4], slower timescales have been the subject of several studies aimed at measuring conformational exchange in signaling enzymes and other macromolecules [1,7,20,37–39]. For these experiments, CPMG-based R_2 experiments are typically employed, which are generally sensitive to exchange rate constants in the 10^2–10^4s^{-1} range. To better observe the trend, we have plotted the line graph of the same data in panels B (ΔR_{1p}) and D (ΔR_{2p}). As indicated in the legend, $v_{\text{max}}^\text{HS1}$ values of 3, 4, and 5 kHz correspond to blue, gray, and orange.

Fig. 1. Adiabatic HS1 and HS8 R_{1p} (A–C) and R_{2p} (D–F) relaxation rates measured for ubiquitin at 5 °C as a function of the maximum applied RF field $v_{\text{max}} = c v_{\text{max}}^{\text{HS1}} / (2\pi)$ of 3 kHz (A and D), 4 kHz (B and E), and 5 kHz (C and F). HS1 and HS8 pulses are black and red, respectively as indicated in the legend. Each adiabatic pulse was 4 ms in length and executed in blocks of four to give total relaxation delays of 16, 32, 48, 64, 80, 96, and 128 ms for R_{1p}, and 16, 32, 48, 64, 80, and 96 ms for R_{2p}. Relaxation rates were obtained from single exponential fits using 2D peak intensities from these datasets.

Fig. 2. (A) ΔR_{1p} ($=R_{1p,\text{HS8}} - R_{1p,\text{HS1}}$) and (C) ΔR_{2p} ($=R_{2p,\text{HS1}} - R_{2p,\text{HS8}}$) calculated from data in Fig. 1 as a function of the maximal RF applied amplitude. A residue that shows a value outside one standard deviation was considered to have a relaxation contribution due to chemical exchange (R_{ex}). To better observe the trend, we have plotted the line graph of the same data in panels B (ΔR_{1p}) and D (ΔR_{2p}). As indicated in the legend, v_{max} values of 3, 4, and 5 kHz correspond to blue, gray, and orange.

Fig. 3. Fitted HARD dispersion curves measured for [U-15N] ubiquitin at 5 °C for $v_{\text{max}} = 3.5$ kHz [28]. Panels A, B, C, and D correspond to residues 23, 25, 55, and 70, respectively. The relaxation contribution from chemical exchange only is shown, and was derived by subtracting the relaxation rates of non-exchanging residues from those that have an exchange contribution. The parameters from the fit are reported in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Residue</th>
<th>$k_{\text{ex}} \times 10^4 \text{s}^{-1}$</th>
<th>$\Delta \sigma^2 \rho_{\theta \phi} \times 10^4 \text{s}^{-1}$</th>
<th>$\phi_{\theta \phi} \times 10^4 \text{rad}^2 \text{s}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile23</td>
<td>2.2 ± 0.1</td>
<td>2.32 ± 0.27</td>
<td>1.2 ± 0.3</td>
</tr>
<tr>
<td>Asn25</td>
<td>2.4 ± 0.1</td>
<td>2.32 ± 0.22</td>
<td>1.4 ± 0.1</td>
</tr>
<tr>
<td>Thr55</td>
<td>1.9 ± 0.2</td>
<td>2.5 ± 0.6</td>
<td>–</td>
</tr>
<tr>
<td>Val70</td>
<td>3.8 ± 0.3</td>
<td>2.6 ± 0.4</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>Ile23</td>
<td>15 ± 1</td>
<td>8.1 ± 1.0</td>
<td>11.3 ± 4.1</td>
</tr>
<tr>
<td>Asn25</td>
<td>27 ± 1</td>
<td>15.9 ± 2.2</td>
<td>18.5 ± 2.2</td>
</tr>
<tr>
<td>Thr55</td>
<td>4.8 ± 0.6</td>
<td>4.1 ± 1.2</td>
<td>–</td>
</tr>
<tr>
<td>Val70</td>
<td>17 ± 1</td>
<td>5.9 ± 0.9</td>
<td>5.4 ± 1.4</td>
</tr>
</tbody>
</table>

Values for k_{ex}, $\Delta \sigma^2 \rho_{\theta \phi}$, and $\phi_{\theta \phi}$ were obtained from fitting Eqs. (1) and (2) to obtain k_{ex}, $\Delta \sigma^2 \rho_{\theta \phi}$, and $\phi_{\theta \phi}$ values for each residue. The exchange contribution was obtained by the subtraction method for data obtained at $v_{\text{max}} = 3.5$ kHz [28]. The non-exchanging residues listed in parentheses were averaged and subsequently subtracted from the following exchanging residues: Ile23 (20, 21, 22, 26, 27, 28), Asn25 (20, 21, 22, 26, 27, 28), Thr55 (31, 52, 54, 56, 57, 58), and Val70 (66, 67, 68, 69, 71, 72). Error bars result from jackknife simulations using repeated relaxation rates determined from HS1 pulses. The Massi et al. values were obtained at 280 K [36], the Ban et al. values at 277 K [44], and the values from this work (Traaseth et al.) at 278 K.
at 20 °C and found that several residues had dispersion in relaxation rates > 5 s⁻¹ (ν_CPMG=50Hz − ν_CPMG=1000Hz). We then collected full adiabatic R₁p and R₂p datasets. The results are shown in Fig. 4 and Supporting Information Fig. 2 (data are divided into separate panels). From this set of experiments, the residues with the largest dispersions for adiabatic R₂p were 28, 49, 50, 51, 68, and 69, which is in good agreement with the CPMG experiments. To identify whether slower exchange processes could be probed using standard approaches, we performed the off-resonance spin-lock R₁p experiment as described previously [36,41]. This experiment was used to compare our method for ubiquitin in our previous work [28]. From Fig. 5, CPMG and the HARD R₂p experiments sensitively detect the exchange process occurring in the RNA ligase, while the spin-lock R₁p experiment is only slightly sensitive. The CPMG experiment gave a larger dispersion than did the adiabatic R₂p experiment. However, the HARD-R₂p experiment was able to detect ms to ms dynamics in both faster (ubiquitin) and slower exchange processes (RNA ligase), whereas the CPMG experiment could not sensitively detect exchange in ubiquitin [28].

2.4. Dynamic range of adiabatic R₁p and R₂p versus CPMG and spin-lock R₁p

The range of conformational dynamics within biopolymers covers vibrational motions of chemical bonds to large amplitude domain rearrangements. Nuclear spin relaxation experiments can be tailored to detect motions occurring from ps to ms time-scales [15]. For RNA ligase and ubiquitin, we showed that it is possible to set the window of detection by choosing experimental parameters such as echo time used in CPMG and δ_HSn in the adiabatic pulses for R₁p and R₂p. To better define the dynamic range covered by the above experiments, we carried out computational simulations for a two-site exchange system under anisochronous exchange. The calculations were performed using a random exchange process combined with product operator formalism [42,43]. This approach is applicable to any pulse sequence that utilizes both hard and shaped pulses. We consider the simple case of a two-site exchange at equilibrium between specific magnetic sites A and B with the direct and backwards exchange rate constants kA and kB ((νex = kA + kB) coupled through the Bloch-McConnell relationship: kA/pA = kB/pB, where pA and pB are the normalized equilibrium populations (pA + pB = 1.0). The method used in this work was described in detail in [43]. These simulations make it possible to calculate the trajectories of the density matrix evolution in the presence of exchange:

$$\sigma_i(t) = \prod e^{-iH_i\Delta t} \sigma_i(0) \prod e^{iH_i\Delta t}$$

where H_i is the time-dependent Hamiltonian and σ(t) is the density matrix. The calculations were performed by simulating 1000 randomly distributed evolution trajectories by creating random intervals between jumps for the exchange process [43]. To simulate the dynamic range covered by each method in a similar manner as that shown for the experimental data in Figs. 2 and 5, we calculated the relaxation dispersion observed in the simulations as follows: CPMG, AR_Deff = R2eff/CPMG=50Hz − R2eff/CPMG=1000Hz; HARD-R₁p, AR_Deff = R₂p,HS1 − R₂p,HS2; HARD-R₁p, AR_Deff = R₁p,HS1 − R₁p,HS2; spin-lock R₁p, AR_Deff = R₂eff,HS1/C24 − R₂eff,HS1/C24. In accordance with experimental findings reported by Palmer and co-workers [36], we set Δν = 600 Hz (Δν = Δν/2π) and pA = 0.97. The simulation results in Fig. 7 show that maximal relaxation dispersion is obtained for CPMG and HARD-R₂p experiments at νex values of ~1000–7000 s⁻¹ and ~2500–8500 s⁻¹, respectively. On the other hand, the maximal dispersion of spin-lock R₁p falls in the range of 4500–10,500 s⁻¹. In our simulations, we observed the smallest dispersion for the HARD-R₁p method. However, this experiment probes the fastest exchange rates and has the broadest sensitivity range with similar dispersions from νex ~ 15,000 to 50,000 s⁻¹. For ubiquitin, the simulations are in strong agreement with the experimental values reported in Table 1 [36,44]. Specifically, the highlighted region in Fig. 7B corresponds to the νex values we obtained for ubiquitin (20,000–30,000 s⁻¹) [28]. The simulations confirm our experimental findings that the HARD-R₂p experiment gives the largest relaxation dispersion over this range of νex. In general, the HARD-R₂p or HARD-R₁p experiments provide the largest dispersions ranging from ~10⁷ to ~10⁸ s⁻¹ under these simulation parameters. While these differences are somewhat small (~2 s⁻¹), this further validates our experimental results on ubiquitin [28] and establishes the HARD method as an alternative experiment that can complement existing nuclear relaxation experiments. Furthermore, it should be noted that by increasing the applied field strength of the adiabatic pulses (Figs. 1 and 2) it is possible to induce even larger dispersions.

One of the benefits of the HARD method is that the R₁p and R₂p experiments displayed differential sensitivity to the exchange process (Figs. 6 and 7). Therefore, when both HARD-R₁p and HARD-R₂p show relaxation dispersion, data can be fit simultaneously as shown in Fig. 3 for ubiquitin. This reduced the ambiguity of the fitted parameters and improved the reliability of the fit in a similar manner as dispersion curves acquired at two or more magnetic field strengths [45,46]. While additional data at a second magnetic field strength would further improve reliability of the fitted data shown in Table 1, this may not be required of the HARD method. For RNA ligase, the simulations agree well with the experimental results that suggest the motion is too slow to be probed using HARD-R₁p or spin-lock-R₁p with the given experimental parameters (e.g., effective spin-lock field strength). Note that while we show fitted RNA ligase R₂p dispersion curves in Fig. 6, a second magnetic field is required to obtain reliable fitted parameters, similar to the spin-lock-R₁p and CPMG relaxation dispersion experiments. Furthermore, future developments are needed to investigate new fitting approaches that apply to slower exchange processes, since the formalism in Eqs. (1) and (2) apply only to the fast exchange regime.

Based on the above computational results, we conclude that (a) the simulations corroborate the experimental data for ubiquitin and RNA ligase and (b) the HARD method is a good complement to the existing methods for characterizing conformational dynamics.

3. Discussion

Adiabatic pulses have been powerful tools to observe contrast in magnetic resonance imaging (MRI) [33,47,48] and to assess spin dynamics of cerebral metabolites in the human brain [49]. For
Fig. 5. Comparison of CPMG (A and E), spin-lock R_1 (B and F), HARD R_1 (C and G) and R_2 (D and H) relaxation rates measured for the RNA ligase at 20 °C. All values are delta plots defined as the difference between the end-points in each of the experiments. For the HARD method it is $\Delta R_{1\text{eff}} (R_{1\text{eff}}, HS_8) - R_{1\text{eff}}, HS_1$ and for spin-lock R_1 it is $\Delta R_1 (R_{\text{eff,offset}=-1500Hz} - R_{\text{eff,offset}=-2000Hz})$. Note for spin-lock R_1, each residue is slightly different due to the dependence on the frequency offset. The top and bottom rows are the same data with different y-axis scales. Due to this, residue 49 data in panel E is cut-off and does not appear. The relatively large error bars in the CPMG experiment for some residues in panel E are due to low signal intensity in the 2D spectra, presumably from the 40 ms of constant time used in the experiment.

Fig. 6. Dispersion curves of four residues (28, 49, 51, and 68) in RNA ligase that showed a chemical exchange contribution to the observed relaxation rates. The CPMG data are shown in A and E, the spin-lock R_1 data in B and F, the HARD R_1 data in C and G, and the HARD R_2 data in D and H. The top panels are for residues 28 (black) and 51 (blue), while the bottom panels show residues 49 (black) and 68 (blue). The exchange contribution of residues 28, 49, 51, and 68 for HARD R_1 and R_2 was obtained by subtracting the average relaxation rates from residues 20–25 (non-exchanging residues). Since the R_1 HARD experiment did not show exchange (panels C and G), all values of $R_{1\text{ex}}$ were set to 0 for the fitting of the k_{ex} values using Eqs. (1) and (2). The fits shown in panels D and H yielded similar k_{ex} values for all residues (average of 3900 Hz with standard deviation of 1600 Hz). Fitted k_{ex} values from the CPMG experiment were 900 ± 200 s$^{-1}$ (average ± standard deviation) for residues 49, 51, and 68, while residue 28 yielded an exchange rate of 6500 s$^{-1}$. These values are obtained from data acquired at only one magnetic field (14.1 T). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Product operator simulations defining the dynamic range of the four experimental methods investigated in this article to measure relaxation dispersion. These simulations are valid over all exchange regimes (i.e., all k_{ex} values). The difference between exchange-induced relaxation rate constants obtained with different parameters of CPMG, adiabatic R_1, and R_2, and spin-lock R_1 methods. The method used in this work was described previously [43]. For CPMG, $\Delta R_{1\text{eff}} (R_{\text{eff,offset}=-1500Hz} - R_{\text{eff,offset}=-2000Hz})$; for adiabatic methods the $\Delta R_{1\text{ex}} (R_{1\text{ex}}, HS_8) - R_{1\text{ex}}, HS_1$ and $\Delta R_{1\text{ex}} (R_{1\text{ex}}, HS_8) - R_{1\text{ex}}, HS_1$ using $v_{1,\text{max}} = 4$ kHz, and spin-lock R_1, $\Delta R_{1\text{eff}} (R_{\text{eff,offset}=-1500Hz} - R_{\text{eff,offset}=-2000Hz})$. Other parameters were $\Delta \nu = 600$ Hz and $p_A = 0.97$. Panel B is the same data as panel A with a change in the displayed x and y scales. The gray region corresponds to the k_{ex} values of ubiquitin reported in Table 1.
these experiments, RF power deposition and time of acquisition are at a premium due to the requirements of working with live samples. Our aim is to integrate a wide variety of adiabatic pulse modulation functions in order to increase the dynamic range and to make relaxation measurements more feasible for macromolecules. There are several parameters that can be varied to improve the performance of the HARD method. For example, carrying out the adiabatic R_{1P} and R_{2P} experiments with $\omega_{max}^2/(2\pi)$ set to 5 kHz increased the dispersion by ~60–70% in ubiquitin. While this applied RF amplitude may exceed current cryogenic probe technology, room temperature probes are capable of handling these powers. Improvements in hardware are expected to make these techniques applicable for large molecules that benefit from sensitivity increases from cryogenic probes. In addition, development of new adiabatic pulses that satisfy superadiabatic conditions would further advance the HARD method [50]. We also outlined a fitting strategy to extract dynamic parameters that were in excellent agreement with literature values of ubiquitin without the need to back-calculate rates in a frequency-dependent manner.

If the inherent exchange parameters are optimally sensitive for the CPMG experiment (see Fig. 5), larger relaxation dispersions were obtained relative to the HARD method. Nevertheless, for faster exchange processes, the adiabatic R_{1P} and R_{2P} experiments were more sensitive than the CPMG-based experiment [28]. The simulations in Fig. 7 corroborate the experimental results, showing that the HARD experiments (R_{1P} and R_{2P}) gave the largest relaxation dispersion from $k_{ex} 10^5–10^6 s^{-1}$. Although our simulations used only one set of parameters common to proteins ($p_a, p_b, \Delta\omega_0$, radiofrequency pulse amplitude, and pulse durations), we observed that adiabatic R_{2P} detects slightly faster processes than CPMG. In addition, the adiabatic R_{2P} experiment significantly reduced the measured relaxation rates as compared to the free precession R_2 CPMG experiment, which allowed for greater signal to noise. HARD-R_{1P}, however, is able to detect even faster processes than HARD-R_{2P}, essentially those timescales covered by spin-lock R_{1P}. This complements the existing approaches by giving greater flexibility in choosing an appropriate and sensitive experiment for quantifying conformational exchange.

In summary, the HARD method uses adiabatic pulses that cover a large bandwidth and give reliable rate constants over the entire spectral width. In addition, HARD is a complementary approach that can be used if CPMG-based and rotating frame spin-lock R_{1P} techniques are not sensitive for a particular sample (e.g., short T2 times). This method can be further improved by innovations that select long-lived coherences (shorter relaxation rates) [51] and advancements in NMR hardware (ultrafast timescale resolution and improved power handling) that will further extend the dynamic range for probing motions at all timescales.

4. Materials and methods

4.1. Sample preparation

15N-labeled ubiquitin was grown in Escherichia coli BL21(DE3) and purified using size-exclusion chromatography. The sample was ~1 mM. The expression and purification of the RNA ligase will be published elsewhere. The sample for testing the HARD method consisted of ~1 mM RNA ligase in 20 mM HEPES, 150 mM NaCl, 10 mM β-mercaptoethanol, ~2 mM ZnCl$_2$, and at a pH = 7.5.

4.2. NMR spectroscopy

All experiments were performed on Varian spectrometers (INOVA and VNMRS) operating at a 1H frequency of 600 MHz. The experiments on ubiquitin were performed at 5 °C as described previously [28], while those with the RNA ligase were carried out at 20 °C. Adiabatic pulses of the HSN variety were used, with $n = 1, 2, 4, 6$, and 8. In the frequency modulated (FM) frame, the amplitude and frequency modulated functions for the HS1 pulse are given by [52]:

$$\omega_1(t) = \omega_1^{max} \sec h(\beta(2t/T_p - 1))$$

(4)

$$\omega_{02}(t) - \omega_c = A \tan h(\beta(2t/T_p - 1))$$

(5)

For the HSN pulse with $n > 1$:

$$\omega_1(t) = \omega_1^{max} \sec h(\beta(2t/T_p - 1)^n)$$

(6)

$$\omega_{02}(t) - \omega_c = A \int \sec h^2(\beta \tau^n) d\tau$$

(7)

where $t \in [0, T_p]$, $T_p = 2t/T_p - 1$ and $|t| \leq 1$ for $t \in [0, T_p]$, β is a truncation factor ($\sec h(\beta) = 0.01$), A is the amplitude of the frequency sweep in rad/s, T_p is pulse length, ω_c is carrier frequency (the center frequency in the bandwidth of interest), and ω_1^{max} is the maximum value of $\omega_1(t)$. For our experiments, T_p was set to 4 ms. Total relaxation delays were 16, 32, 48, 64, 80, 96, and 128 ms for R_{1P} and 16, 32, 48, 64, 80, and 96 ms for R_{2P} experiments. The 2D peak intensities were fit to a single exponential function to obtain the relaxation rate constant for each HSN experiment.

For ubiquitin, the adiabatic experiments were carried out with 4 scans, 80 increments in the 15N dimension (spectral width of 2200 Hz), 1000 points in the 1H dimension (spectral width of 12,019 Hz). The R_{1P} experiments were performed with 8 scans, 64 increments in the 15N dimension (spectral width of 1600 Hz), 2048 points in the 1H dimension (spectra width of 12,019 Hz), and a recycle delay of 2 s.

The CPMG experiments on the RNA ligase were performed with the pulse scheme described in Loria et al. [53], with a constant-time block of 40 ms and CPMG frequencies of 50, 100, 200, 300, 400, 600, 800, and 1000 Hz. The R_{2eff} was calculated using the reference spectrum with no constant time delay, according to the relationship:

$$R_{2eff} = -\ln(I_{CPMG}) / I_0$$

(8)

where I_{CPMG} is the intensity for a given value of v_{CPMG}, I_0 is the intensity of the reference spectrum, and T is the constant time delay. The CPMG data for RNA ligase were fit using the fast-exchange equation [54].

The spin-lock R_{1P} off-resonance experiments [36,41] were performed on the RNA ligase using the following applied field strengths (Hz)/15N offsets (Hz): 1500/475, 1500/–325, 1500/–1425, 2100/–325, 2100/–1425, 2900/–825, and 2900/–1425. These values were converted into R_2 rates by considering the nominal effective field without time dependence, according to the relationship:

$$R_{1P} = R_2 \cos^2 \alpha + R_2 \sin^2 \alpha$$

(9)

The pH of the adiabatic half passage pulses [55,56] were 6 ms and utilized a 25 kHz frequency sweep [41,57]. R_1 relaxation rate constants for ubiquitin and RNA ligase were measured using relaxation delays of 10, 30, 50, 200, 500, and 1000 ms. R_{2eff} was calculated from R_1 values and is equal to $R_2^0 + R_2^\infty$, where R_2^0 is the rate constant originating from relaxation other than chemical exchange and R_2^∞ is the relaxation rate constant from exchange. All

1 Eq. (7) replaces Eq. (1) in [28], which was typographically incorrect. Also, the Glu24 residue previously reported in Fig. 2 [28] should have Ile23.
relaxation rate constants R_i were obtained by fitting the data to a single exponential decay ($e^{-t/T}$) with the first point in the series of the experiment acquired twice to estimate the experimental error.

Acknowledgement

This work was supported by National Institutes of Health Grants GM072701 (G.V.), BTR – P41 RR08079 (CMRR), R01NS061866 (S.M.), NASA Astrophysics Institute NNX09AH70A (B.S.).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jmri.2012.03.024.

References