Spring 21

We know that you may be taking courses at multiple locations this semester. If you are enrolled in this course 100% remotely and are not a Go Local/Study Away student for this course site, please make sure that you have completed the online academic orientation via NYU Classes so you are aware of site specific support structure, policies and procedures. Please contact the site academic staff (vanda.thorne@nyu.edu) if you have trouble accessing the NYU Classes site.

If you are attending in person, you will be assigned a seat on the first day and are expected to use that seat for the entire semester due to NYU COVID-19 safety protocol. Please note that you are expected to attend every class meeting in-person; however, this may change during the drop/add period if in-person student registration increases significantly or at any point during the semester if local COVID-19 regulations require additional physical distancing.

Instructor Information

- TBA

Course Information

- CORE-UA 9306 P01 and P02
- Life Science: Brain and Behavior
- Lecture: Thursdays 11 a.m. – 1:30 p.m. (CET)
 Laboratory: Thursdays 2 p.m. – 3:15 p.m. (CET)
- Zoom: meeting ID 921 8896 7834
- NYU Prague Academic Calendar

Course Overview and Goals

The main goal of the course is to acquire a basic understanding of the brain processes that underlie cognitive abilities. The course will emphasize that the brain is a complex system of interacting units with emergent properties, rather than the more traditional approach that focuses on the activity and function of single nerve cells. The topics of the course cover key aspects of brain function such as: processing of sensory information, motor system function, constructing mental models of the world,
that enable, for example, orientation in space, decision making, learning and memory, function of sleep, emotions, social behavior, brain development and brain pathologies.

An additional goal is to use neuroscience to illustrate and explain the scientific method and scientific work in general. When appropriate, the course will use historical examples and stories of specific scientists to inform about the process of scientific discoveries. The course will present scientific work as a continuous dialogue between theoretical ideas and experimental results, with controversies, conflicts and endless discussions.

Lectures and laboratory classes will be performed online. The lab sections will include “virtual visits” to research and clinical laboratories.

Upon Completion of this Course, students will be able to:

- Express a basic understanding of the brain processes that underlie cognitive abilities.
- Understand the process of scientific work – from stating a hypothesis, to experiments that test the hypothesis, to the interpretation of data.
- Understand how knowledge of brain science impacts society, healthcare, etc.

Course Requirements

Class Participation
You are expected to attend class during each scheduled online session.

Homework
Students will receive three to five questions at the end of each lecture and will be asked to prepare individually one-page answer to each question (with text and possibly illustrations). The answers should be submitted within two weeks. Grade will be partly based on the homework.

Grading of Assignments
The grade for this class will be based on homework questions, two larger essays and class participation. The two essays should be five to ten pages long on a topic selected by each student that is related to brain and behavior course.

The grade for this course will be determined according to the following formula:

<table>
<thead>
<tr>
<th>Assignments/Activities</th>
<th>% of Final Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>50%</td>
</tr>
<tr>
<td>Essay 1</td>
<td>20%</td>
</tr>
<tr>
<td>Essay 2</td>
<td>20%</td>
</tr>
<tr>
<td>Class participation</td>
<td>10%</td>
</tr>
</tbody>
</table>

Letter Grades
Letter grades for the entire course will be assigned as follows:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>92.5% and higher</td>
</tr>
</tbody>
</table>
A- 90.0 – 92.49%
B+ 87.5% - 89.99%
B 82.5% - 87.49%
B- 80% - 82.49%
C+ 77.5% - 79.99%
C 72.5% - 77.49%
C- 70% - 72.49%
D+ 67.5% - 69.99%
D 62.5% - 67.49
D- 60% - 62.49%
F 59.99% and lower

Assessment Expectations

Grade A: Excellent work (i.e. thorough understanding and knowledge of material demonstrated in homework and essays, active participation and discussion of materials in lectures and laboratory classes)

Grade B: Very good work (very good knowledge of material, active participation in classes and laboratories)

Grade C: Good work: (good understanding and knowledge of material demonstrated in homework and essays)

Grade D: Satisfactory performance (satisfactory understanding and knowledge of material)

Grade F: unsatisfactory work

Course Schedule

Topics and Assignments

<table>
<thead>
<tr>
<th>Week/Date</th>
<th>Topic</th>
<th>Reading</th>
<th>Assignment Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td>Brain as a complex system</td>
<td>Chapters 1 and 2 (part I)</td>
<td>Homework assigned at the end of each session is due two weeks later.</td>
</tr>
<tr>
<td>Thursday, January 28</td>
<td>Neurons – basic elements of neural networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session 2</td>
<td>Brain structure and function</td>
<td>Chapter 2 (parts II and III) and chapter 3</td>
<td></td>
</tr>
<tr>
<td>Thursday, February 4</td>
<td>Electrical signaling in nerve cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab: brain anatomy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Session 3 | Thursday, February 11 | Electro-chemical communication within neural networks
Neural communication review
Lab: Measuring electrical activity of neurons | Chapter 3 and 4 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, February 18</td>
<td>No Class – Classes Meet according to Monday Schedule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Session 4 | Thursday, February 25 | Representation of the world vs. model of the world
Neural circuits for spatial navigation
Lab: behavioral experiments in animals | |
| Session 5 | Thursday, March 4 | Importance of timing in neuronal communication
Attractor neural networks | |
| Session 6 | Thursday, March 11 | Emotions
Social behavior and brain function | Chapter 11 |
| Session 7 | Thursday, March 18 | Vision and brain processing of visual world
Lab: sensory processing, optical illusions | Chapter 7
Due date for essay 1. |
| Session 8 | Thursday, March 25 | Sensory systems or how does the brain know about the world
Review session, discussions of essays 1. | Chapter 6, chapter 5 (parts I and II) |
| Session 9 | Thursday, April 1 | Control of movements
Lab: magnetic resonance imaging | Chapter 5 (part III) |
| Session 10 | Thursday, April 8 | Brain development, nature vs. nurture | Chapter 13 (part III) |
| Session 11 | Thursday, April 15 | Brain in sleep
Effects of sleep on memory consolidation | Chapter 10 |
<table>
<thead>
<tr>
<th>Session 12</th>
<th>Thursday, April 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab: sleep laboratories</td>
<td>Learning and memory, amnesia, false memories</td>
</tr>
<tr>
<td></td>
<td>Molecular substrate of memory processes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Make-up Day (for any cancelled classes)</th>
<th>Friday, April 23 (9am-9pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention on cognitive control</td>
<td></td>
</tr>
<tr>
<td>Mystery of consciousness and free will, altered states of consciousness</td>
<td></td>
</tr>
<tr>
<td>Lab: Human EEG</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 13</th>
<th>Thursday, April 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention on cognitive control</td>
<td></td>
</tr>
<tr>
<td>Mystery of consciousness and free will, altered states of consciousness</td>
<td></td>
</tr>
<tr>
<td>Lab: Human EEG</td>
<td>Chapter 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 14</th>
<th>Thursday, May 6 (last day of classes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain in illness, brain disorders, prevention and treatment options</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reading Day</th>
<th>Tuesday, May 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Classes</td>
<td>Due date for essay 2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 15</th>
<th>Thursday May 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review, discussion of essays 2.</td>
<td></td>
</tr>
</tbody>
</table>

Course Materials

Required Textbooks & Materials

- *The Mind’s Machine – Foundations of Brain and Behavior*

Resources

- Access your course materials: [NYU Classes](nyu.edu/its/classes)
- Databases, journal articles, and more: [Bobst Library](library.nyu.edu)
- Assistance with strengthening your writing: [NYU Writing Center](nyu.mywconline.com)
- Obtain 24/7 technology assistance: [IT Help Desk](nyu.edu/it/servicedesk)
- NYU Prague library: [Tritius Catalog](https://nyu.tritius.cz/?lang=EN)
Course Policies

Attendance and Tardiness

Studying at Global Academic Centers is an academically intensive and immersive experience, in which students from a wide range of backgrounds exchange ideas in discussion-based seminars. Learning in such an environment depends on the active participation of all students. And since classes typically meet once or twice a week, even a single absence can cause a student to miss a significant portion of a course. To ensure the integrity of this academic experience, class attendance at the centers or online through NYU Classes if the course is remote synchronous/blended, is expected promptly when class begins. Unexcused absences will affect students' semester participation grade. If you have scheduled a remote course immediately preceding/following an in-person class, you may want to discuss where at the Academic Center the remote course can be taken. Students are responsible for making up any work missed due to absence. Repeated absences in a course may result in failure.

Absences only for medical reasons and for religious observance will be excused. To be excused for religious observance, you must contact the instructor and the Academic Director Vanda Thorne (vanda.thorne@nyu.edu) via e-mail one week in advance of the holiday. Your absence is excused for the holiday only and does not include days of travel associated with the holiday. Unexcused absences will be penalized with a 2% percent deduction from your final course grade for every week of classes missed.

Please note that Friday, April 23 (9am – 9pm CET) is reserved as a make-up day for missed classes.

Students are responsible for making up any work missed due to absence. This means they should initiate email and/or office hour discussions to address any missed lectures and assignments and arrange a timeline for submitting missed work.

Late Submission of Work

Late submission of homework will lead to a 10% reduction of that homework's evaluation.

Academic Honesty/Plagiarism

According to the Liberal Studies Program Student Handbook, plagiarism is defined as follows:

Plagiarism is presenting someone else’s work as though it were one’s own. More specifically plagiarism is to present as one’s own a sequence of words quoted without quotation marks from another writer, a paraphrased passage from another writer’s work; facts or ideas gathered, organized and reported by someone else, orally and/or in writing. Since plagiarism is a matter of fact, not of the student’s intention, it is crucial that acknowledgment of the sources be accurate and complete. Even where there is no conscious intention to deceive, the failure to make appropriate acknowledgment constitutes plagiarism.

The College of Arts and Science’s Academic Handbook defines plagiarism similarly and also specifies the following:

“presenting an oral report drawn without attribution from other sources (oral or written), writing a paragraph which, despite being in different words, expresses someone else’s idea without a reference to the source of the idea, or submitting essentially the same paper in two different courses (unless both teachers have given their permission in advance).

Receiving help on a take-home examination or quiz is also cheating – and so is giving that help – unless expressly permitted by the teacher (as in collaborative projects). While all this looks like a lot to remember, all you need to do is give credit where it is due, take credit only for original ideas, and ask your teacher or advisor when in doubt.”
“Penalties for plagiarism range from failure for a paper, failure for the course or dismissal from the university.” (Liberal Studies Program Student Handbook)

Classroom Etiquette

- Please be mindful of your microphone and video display during synchronous class meetings. Ambient noise and some visual images may disrupt class time for you and your peers.
- If you are not using your cell phone to follow the lesson, cell phones should be turned off or in silent mode during class time.
- Make sure to let your classmates finish speaking before you do.
- Please do not eat during class and minimize any other distracting noises (e.g. rustling of papers and leaving the classroom before the break, unless absolutely necessary)
- If deemed necessary by the study away site (ie COVID related need), synchronous class sessions may be recorded and archived for other students to view. This will be announced at the beginning of class time.
- Students should be respectful and courteous at all times to all participants in class. Consider using the chat function or “raise hand” function in order to add your voice to class discussions especially if leaving the video on presents challenges.

Disability Disclosure Statement

Academic accommodations are available for students with documented and registered disabilities. Please contact the Moses Center for Students with Disabilities (+1 212-998-4980 or mosescsd@nyu.edu) for further information. Students who are requesting academic accommodations are advised to reach out to the Moses Center as early as possible in the semester for assistance. Accommodations for this course are managed through the site sponsoring the class once you request it.