Programming Languages

Sessions 7 & 8Main Theme
Program Structure
and
ObjectOriented Programming

Dr. JearClaude Franchitti

= /7
/ Z 7
L7 o
e
’ /S --
/,’ A S
Z & 7 - s
- - AL S ;
S S ST -
L LB AT T TTTI G ST ST T
e —————— -
4 ’ ’;///;,',;//ﬂ‘;_’, S
/‘//////””
ST S II
g TS

// // /gﬂé_/_l.ll//,//_/‘ P

New York University
Computer Science Department
Courant Institute of Mathematical Scie

Y25

Adapted from course textbook resources
Programming Language Pragmati€sH@ition)
Michael L. Scotfopyright © 2009 Elsevie:i

7

= IS
- s

4 Conclusion

What is the course about?

ACourse description and syllabus:

» http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001

» http://www.cs.nyu.edu/courses/summerl4/CSCI-GA.2110-
001/index.html

ATextbook:

uuuuuuuuuuuu

w5 | » Programming Language Pragmatics (3" Edition)

il Michael L. Scott

Morgan Kaufmann

ISBN-10: 0-12374-514-4, ISBN-13: 978-0-12374-514-4, (04/06/09)

AAdditional References:

Osinski, Lecture notes, Summer 2010
» Grimm, Lecture notes, Spring 2010
Gottlieb, Lecture notes, Fall 2009
Barrett, Lecture notes, Fall 2008

M

M

M

http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html

Session Agenda

A Session Overview

r

A Program Structure

r

A Object-Oriented Programming

A Conclusion

lcons / Metaphors

Session 6 Review

A Data Types
» Strong vs. Weak Typing
» Static vs. Dynamic Typing
A Type Systems
» Type Declarations
A Type Checking
» Type Equivalence
» Type Inference
» Subtypes and Derived Types

A Scalar and Composite Types
» Records, Variant Records, Arrays, Strings, Sets

A Pointers and References
» Pointers and Recursive Types

A Function Types
A Files and Input / Output
A Conclusions

[sesen v
B L .
(8] oo covenea poganeg

4 Conclusion

Program Structure

A Key Concepts
» Modules
» Packages
» Interfaces

» Abstract types and information hiding

A Review Session 2
» Textbook Sections 3.3.4, 3.3.5, 3.7

Software Complexity

A Tony Hoare:

» here are two ways of constructing a software design: one way is
to make it so simple that there are obviously no deficiencies, and
the other is to make it so complicated that there are no obvious
deficiencies.

A Edsger Dijkstra:

» Computing is the only profession in which a single mind is
obliged to span the distance from a bit to a few hundred
megabytes, a ratio of 1 to 10°, or nine orders of magnitude.
Compared to that number of semantic levels, the average
mathematical theory is almost flat. By evoking the need for deep
conceptual hierarchies, the automatic computer confronts us
with a radically new intellectual challenge that has no precedent
In our history.

A Steve McConnell:

» Soft wareds Primary Technical
complexity.

Dealing with Complexity

A Problem Decomposition: Minimize the amount of
essential complexity that has to be dealt with at
any one time. In most cases, this is the top
priority

A Information Hiding: Encapsulate complexity so

that it is not accessible outside of a small part of
the program
» Additional benefits of information hiding:

A Reduces risk of name conflicts

A Safeguards integrity of data
A Helps to compartmentalize run-time errors

Modules

A Programs are built out of components

A Each component:

» has a public interface that defines entities exported by
the component

» may depend on the entities defined in the interface of

another component (weak external coupling)

» may include other (private) entities that are not
exported

» should define a set of logically related entities (strong
iInternal coupling)

»MStrong (i ntécLowl jexobdesalb
A We call these components modules

Modules Definition

A Different languages use different terms

» different languages have different semantics for this
construct (sometimes very different)

» a module Is somewhat like a record, but with an
Important distinction:
A record => consists of a set of names called fields, which refer

to values in the record

A module => consists of a set of names, which can refer to
values, types, routines, other language-specific entities, and
possibly other modules

A Note that the similarity is between a record and
a module, not a record type and a module

Language Constructs for Modularity

A Issues:
» public interface
» private implementation
» dependencies between modules
» naming conventions of imported entities
» relationship between modules and files

A Language Choices

» Ada : package declaration and body, with and use clauses,
renamings

C : header files, #include directives

C++ : header files, #include directives, namespaces, using
declarations/directives, namespace alias definitions

Java : packages, import statements
ML : signature, structure and functor definitions

Ada Packages

package Queues is
Size: constant Integer := 1000;

type Queue is private; -- informatiion hiding

procedure Enqueue (Q: in out Queue, Elem: Integer);
procedure Dequeue (Q: in out Queue; Elem: out Integer};
function Empty (Q: Queue) return Boolean;

function Full (Q: Queue) return Boolean;

function Slack (Q: Queue) return Integer;

-- overloaded operator "=":
function "=" (Q1, Q2: Queune) return Boolean;
private

-- concern of timplementation, not of package client
end Queunes;

14

Private Parts and Information Hiding

package [(ueues is
-- wistble declarations
private
type Storage is
array (Integer range <>) of Integer;
type Queue is record

Front: Integer := 0; -- next elem fto remove

Back: Integer := 0; -- next available slot
Contents: Storage (0 .. Size-1); -- actual contents
Num: Integer := 0;

end record:
end Queues;

15

Implementation of Queues

package body Queues is
procedure Enqueue (: in out Queue;
Elem: Integer) is
begin
if Full(Q) then
-- need to signal error: raise exception

else
Q.Contents(Q.Back) := Elem;
end if;
Q.Num := Q.Num + 1;
Q.Back := (Q.Back + 1) mod Size:

end Enqueue;

16

I
0

Q =
g
\eg ‘:/?/}’
4 9 Y

Predicates on Queues

=36

function Empty (Q: Queue) return Boolean is

begin
return Q.Num = 0O; -— ¢lient cannot access
S Num directly
end Empty,;

function Full (Q: Queue) return Boolean is
begin

return @Q.Num = Size;
end Full;

function Slack (Q: Queue) return Integer is
begin

return Size - . Num;
end Slack;

17

Operator Overloading

function "=" (Q1, Q2 : Queue) return Boolean is
begin
if Q1.Num /= Q2.Num then
return False;
else
for J in 1 .. Q1.Num loop
-- check corresponding elements
if Q1.Contents ((Q1.Front + J - 1) mod Size) /=
Q2.Contents ((Q2.Front + J - 1) mod Size)

then
return False;
end 1if;
end loop;
return True; -- all elemenis are equal
end if;
end "="; -- operator "/=" implicitly defined

-- as negation of "="

18

"
£

@ o . ©
(Ce ‘v?/)
& 3 »

Client Can Only Use Visible Interface

ol
O

o ¥
o

with Queunes; use [Queunes; with Text_I0;

procedure Test is

1, Q2: Queune; -- local objects of a private Ltype
Val : Integer;
begin
Enqueue (Q1, 200); -- wvisible operation
for J in 1 .. 25 loop

Enqueue (Q1, J);
Enqueue (Q2, J);

end loop;

Degeue(Q1l, Val); -- wvisible operation

if Q1 /= Q2 then
Text_I0.Put_Line("lousyyimplementation");

end if;

end Test;

Not es: The NAuseo

keyword specifies that a functio
should be searched for in this |ibrary. Awitho iIs
it means that you want to work with the functions
pretty straightforward you want to put out the t
you are interested in is the one in Ada.Text_|O.

19

Implementation

A package body holds bodies of
subprograms that implement interface

A package may not require a body:

package Days 1is
type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sumn);

subtype Weekday is Day range Mom .. Fri;

Tomorrow: constant array (Day) of Day
= (Tue, Wed, Thu, Fri, Sat, Sun, Mon);

Next_Work_Day: constant array (Weekday) of Weekday
:= (Tue, Wed, Thu, Fri, Mon);
end Days,;

20

Syntactic Sugar: Use and Renames

A Visible entities can be denoted with an expanded name:
with Text 10 ;

Text 10 . Put_Line (" hello ");
A Use clause makes name of entity directly usable:

with Text IO ; use Text IO ;

Put_Line (" hello ");

A Renames clause makes name of entity more
manageable:

with Text 10 ;
package T renames Text IO ;

T. Put_Line (" hello ");

21

Sugar Can Be Indispensable

with Queues ;
procedure Test is

Q1, Q2: Queues.Queue ;
begin

If Q1 = Q2 then ...

error : "="is not directly visible
must write instead : Queues ."="(Q1 , Q2)

Two solutions:
Aimport all entities:
» use Queues ;

A import operators only:
» use type Queues.Queue ;

22

C++ Namespaces

A Late addition to the language

A an entity requires one or more declarations and a single
definition
A A namespace declaration can contain both, but
definitions may also be given separately
// in .h file
namespace util {

int £ (int); /#* declaration of f */
}

// in .cpp file
namespace util {
int £ (int i) {
// definition provides body of function

23

Dependencies Between Modules in C++

A Files have semantic significance: #include
directives means textual substitution of one file
In another

A Convention is to use header files for shared
Interfaces

#include <iostream> // import declarations

int main () {
std::cout << "C++yisgyreallyydifferent”
<< std::endl;
return 0;

}

24

Header Files Are Visible Interfaces <%

Do

=
‘:/?/}’
2L

26

L

namespace stack { // in file stack.h
void push (char);
char pop ();

¥

#include "stack.h" // tmport into client file

void £ () {
stack::push(’c’);
if (stack::pop() != ’c?) error("impossible");

),

25

Q >
£
e g

~':"{&) 2{]&(

Namespace Definitions

#include "stack.h" // import declaratiions

namespace stack { // the definition

const unsigned int MaxSize = 200;
char v[MaxSize]:
unsigned int numElems = 0;

void push (char c) {
if (numElems >= MaxSize)
throw std::out_of_range("stackyoverflow");

v [numElems++] = c;

}

char pop () {
if (numElems == 0)
throw std::out_of_range("stack,underflow");
return v[--numElems];

}

26

P30

L
R
a4

Syntactic Sugar Using Declarations

==

namespace queue { // works on single queue
void enqueue (int);
int dequeue ();

¥

#include "queue.h" // in client file
using queue::dequeue; // selective: a single entity

void £ () {
queue ::enqueue (10); // prefixz needed for enqueue
gqueue :: enqueue (-999);
if (dequeue() !'= 10) // but not for dequeue
error ("buggy,implementation");

27

Wholesale Import: The Using Directive <

Do

=
‘:/?/}’
2L

26

L

#include "queue.h" // in clieni file

using namespace queue; // import everything

void £ () {
enqueue (10); // prefiz not needed
enqueue (-999) ;
if (dequeue() != 10) // for anything
error ("buggyyimplementation");

28

Shortening Names

A Sometimes, we want to qualify names, but
with a shorter name.

Aln Ada:

package PN renames A.Very Long.Package Name;
Aln C++:
namespace pn = a::very_long::package name;

A We can now use PN as the qualifier
Instead of the long name.

29

Visibility: Koenig Lookup

A When an unqualified name is used as the postfix-
expression in a function call (expr.call), other
namespaces not considered during the usual unqualified
look up (basic.lookup.unqual) may be searched; this
search depends on the types of the arguments.

A For each argument type T in the function call, there is a

set of zero or more associated namespaces to be
considered

» The set of namespaces is determined entirely by the types of the
function arguments. typedef names used to specify the types do
not contribute to this set

Koenig Lookup Details

A The set of namespaces are determined in the following
way:

»

If T is a fundamental type, its associated set of namespaces is
empty.

If T is a class type, its associated namespaces are the
namespaces in which the class and its direct and indirect base
classes are defined.

If T is a union or enumeration type, its associated namespace is
the namespace in which it is defined.

If T is a pointer to U, a reference to U, or an array of U, its
associated namespaces are the namespaces associated with U.

If T is a pointer to function type, its associated namespaces are
the namespaces associated with the function parameter types
and the namespaces associated with the return type. [recursive]

Koenig Lookup

Example

namespace NS

{

class A {};
void £(A) {}

int main()

{
NS::A a;
£f(a): //calls NS::f

Example

#include<iostreams

int main()
{
// Where does operator<<() come from?

std::cout << "Hello, World" << std::endl;
return 0;

32

Linking

A An external declaration for a variable indicates
that the entity is defined elsewhere
extern int x; /[l will be found later

A A function declaration indicates that the body is
defined elsewhere

A Multiple declarations may denote the same
entity

extern int x; /l In some other file
A An entity can only be defined once

A Missing/multiple definitions cannot be detected
by the compiler: link-time errors

33

Include Directives = Multiple Declarations

#include "queue.h" // as 1f declaration were
// terxtually present
void £ () { ... }

#include "queue.h" // second declaration in
// different client
void g () { ... }

A Definitions are legal if textually identical (but
compi l er canot check!)

A Headers are safer than cut-and-paste, but not as
good as a proper module system

34

Modules in Java

A Package structure parallels file system
A A package corresponds to a directory
A A class is compiled into a separate object file

A Each class declares the package in which it appears
(open structure)

package polynomials;
class poly {

/7 in file .../alg/polynomials/poly. java
L

package polynomials;
class iterator A

/7 in file .../alg/polynomials/iterator. java
L

Default: anonymous package in current directory

35

Dependencies Between Classes

A Dependencies indicated with import statements:

import java.awt.Rectangle; // declared in java.awt

import java.awt.*; // import all classes
// in package

A No syntactic sugar across packages: use
expanded names

A None needed in same package: all classes in
package are directly visible to each other

36

Modules in ML

A There are three entities:

» signature : an interface
» structure : an implementation
» functor : a parameterized structure

A A structure implements a signature if it
defines everything mentioned in the
signhature (in the correct way)

37

351&*(

Q = ©
5 g

|\~ 3 :/:1/)

> o

<

<!
O

—

ML Signature

A An ML signature specifies an interface for
a module

signature STACKS =

sig
type stack
exception Underflow
val empty : stack
val push : char #* stack -> stack
val pop : stack -> char # stack
val isEmpty : stack -> bool

end

38

ML Structure

Q [*]
e '3

AL o :/?/)

& Wy »

~‘9-<:C(.?-:;u(

A A structure provides an implementation

satructure Stacks : STACKS =
struct

end

type stack = char 1list
exception Underflow
val empty = []

val push = op::

fun pop (c::cs8) = (c, cs)

| pop [= raise Underflow
fun isEmpty [] = true

| isEmpty _ = false

39

Comparison

Ada C4+ Java ML
used to avoid name clashes v v v

access control v weak v
is closed v X X v

A Relation between interface and

Implementation:

» Ada :
Aone package (interface) , one package body

» ML :

Aone signature can be implemented by many
structures

Aone structure can implement many signatures

-

4 Conclusion

41

ObjectOriented Data Types and Representation

A Key Concepts
» Objects
» Classes

A Review Session 6

» Textbook Section 7.7

What is OOP ? (Part I)

A The object idea:

» bundling of data (data members) and operations
(methods) on that data

» restricting access to the data
A An object contains:

» data members : arranged as a set of named fields

» methods : routines which take the object they are
associated with as an argument (known as member
functions in C++)

» constructors : routines which create a new object

A A class is a construct which defines the data,
methods and constructors associated with all of
Its instances (objects)

What is OOP ? (Part II)

A The inheritance and dynamic binding ideas:

» classes can be extended (inheritance):

A by adding new fields
A by adding new methods
A by overriding existing methods (changing behavior)

If class B extends class A, we say that B is a subclass

or derived class of A, and A is a superclass or base
class of B

» dynamic binding : wherever an instance of a class is
required, we can also use an instance of any of its
subclasses; when we call one of its methods, the
overridden versions are used

» There should be an is-a relationship between a
derived class and its base class

