
1

Programming Languages

Sessions 7 & 8 ð Main Theme

Program Structure

and

Object-Oriented Programming

Dr. Jean-Claude Franchitti

New York University

Computer Science Department

Courant Institute of Mathematical Sciences

Adapted from course textbook resources

Programming Language Pragmatics (3rd Edition)

Michael L. Scott, Copyright © 2009 Elsevier

2

2 Program Structure

Agenda

1 Session Overview

4 Conclusion

3 Object - Oriented Programming

3

What is the course about?

ÁCourse description and syllabus:

» http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001

» http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-

001/index.html

ÁTextbook:
» Programming Language Pragmatics (3rd Edition)

 Michael L. Scott

 Morgan Kaufmann

 ISBN-10: 0-12374-514-4, ISBN-13: 978-0-12374-514-4, (04/06/09)

ÁAdditional References:
» Osinski, Lecture notes, Summer 2010

» Grimm, Lecture notes, Spring 2010

» Gottlieb, Lecture notes, Fall 2009

» Barrett, Lecture notes, Fall 2008

http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html

4

Session Agenda

Á Session Overview

Á Program Structure

Á Object-Oriented Programming

Á Conclusion

5

Icons / Metaphors

5

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

6

Session 6 Review

ÁData Types
» Strong vs. Weak Typing

» Static vs. Dynamic Typing

ÁType Systems
» Type Declarations

ÁType Checking
» Type Equivalence

» Type Inference

» Subtypes and Derived Types

ÁScalar and Composite Types
» Records, Variant Records, Arrays, Strings, Sets

ÁPointers and References
» Pointers and Recursive Types

ÁFunction Types

ÁFiles and Input / Output

ÁConclusions

7

2 Program Structure

Agenda

1 Session Overview

4 Conclusion

3 Object - Oriented Programming

8

ÁKey Concepts

» Modules

» Packages

» Interfaces

» Abstract types and information hiding

ÁReview Session 2

» Textbook Sections 3.3.4, 3.3.5, 3.7

Program Structure

9

ÁTony Hoare:

» here are two ways of constructing a software design: one way is

to make it so simple that there are obviously no deficiencies, and

the other is to make it so complicated that there are no obvious

deficiencies.

ÁEdsger Dijkstra:

» Computing is the only profession in which a single mind is

obliged to span the distance from a bit to a few hundred

megabytes, a ratio of 1 to 109, or nine orders of magnitude.

Compared to that number of semantic levels, the average

mathematical theory is almost flat. By evoking the need for deep

conceptual hierarchies, the automatic computer confronts us

with a radically new intellectual challenge that has no precedent

in our history.

ÁSteve McConnell:

» Softwareôs Primary Technical Imperative has to be managing
complexity.

Software Complexity

10

ÁProblem Decomposition: Minimize the amount of

essential complexity that has to be dealt with at

any one time. In most cases, this is the top

priority

ÁInformation Hiding: Encapsulate complexity so

that it is not accessible outside of a small part of

the program

» Additional benefits of information hiding:

ÅReduces risk of name conflicts

ÅSafeguards integrity of data

ÅHelps to compartmentalize run-time errors

Dealing with Complexity

11

ÁPrograms are built out of components

ÁEach component:

» has a public interface that defines entities exported by

the component

» may depend on the entities defined in the interface of

another component (weak external coupling)

» may include other (private) entities that are not

exported

» should define a set of logically related entities (strong

internal coupling)

» ñStrong (internal) cohesion ï Low (external) couplingò

ÁWe call these components modules

Modules

12

ÁDifferent languages use different terms

» different languages have different semantics for this

construct (sometimes very different)

» a module is somewhat like a record, but with an

important distinction:

Årecord => consists of a set of names called fields, which refer

to values in the record

Åmodule => consists of a set of names, which can refer to

values, types, routines, other language-specific entities, and

possibly other modules

ÁNote that the similarity is between a record and

a module, not a record type and a module

Modules - Definition

13

Á Issues:

» public interface

» private implementation

» dependencies between modules

» naming conventions of imported entities

» relationship between modules and files

ÁLanguage Choices

» Ada : package declaration and body, with and use clauses,

renamings

» C : header files, #include directives

» C++ : header files, #include directives, namespaces, using

declarations/directives, namespace alias definitions

» Java : packages, import statements

» ML : signature, structure and functor definitions

Language Constructs for Modularity

14

Ada Packages

15

Private Parts and Information Hiding

16

Implementation of Queues

17

Predicates on Queues

18

Operator Overloading

19

Client Can Only Use Visible Interface

Notes: The ñuseò keyword specifies that a function name which cannot be resolved locally

should be searched for in this library. ñwithò is approximately equal to ñ#includeò: in the above example,

it means that you want to work with the functions available in the ñAda.Text_IOò package. The rest is

pretty straightforward: you want to put out the text ñlousy implementationò, and the Put_Line function

you are interested in is the one in Ada.Text_IO.

20

Implementation

Ápackage body holds bodies of

subprograms that implement interface

Ápackage may not require a body:

21

Syntactic Sugar: Use and Renames

ÁVisible entities can be denoted with an expanded name:

 with Text_IO ;

 ...

 Text_IO . Put_Line (" hello ");

ÁUse clause makes name of entity directly usable:

 with Text_IO ; use Text_IO ;

 ...

 Put_Line (" hello ");

ÁRenames clause makes name of entity more

manageable:

 with Text_IO ;

 package T renames Text_IO ;

 ...

 T. Put_Line (" hello ");

22

Sugar Can Be Indispensable

 with Queues ;

 procedure Test is

 Q1, Q2: Queues.Queue ;

 begin

 if Q1 = Q2 then ...

 -- error : "=" is not directly visible

 -- must write instead : Queues ."="(Q1 , Q2)

Two solutions:

Áimport all entities:

» use Queues ;

Áimport operators only:

» use type Queues.Queue ;

23

C++ Namespaces

ÁLate addition to the language

Áan entity requires one or more declarations and a single

definition

ÁA namespace declaration can contain both, but

definitions may also be given separately

24

Dependencies Between Modules in C++

ÁFiles have semantic significance: #include

directives means textual substitution of one file

in another

ÁConvention is to use header files for shared

interfaces

25

Header Files Are Visible Interfaces

26

Namespace Definitions

27

Syntactic Sugar Using Declarations

28

Wholesale Import: The Using Directive

29

Shortening Names

ÁSometimes, we want to qualify names, but

with a shorter name.

ÁIn Ada:

 package PN renames A.Very_Long.Package_Name;

ÁIn C++:

 namespace pn = a::very_long::package_name;

ÁWe can now use PN as the qualifier

instead of the long name.

30

Visibility: Koenig Lookup

ÁWhen an unqualified name is used as the postfix-

expression in a function call (expr.call), other

namespaces not considered during the usual unqualified

look up (basic.lookup.unqual) may be searched; this

search depends on the types of the arguments.

ÁFor each argument type T in the function call, there is a

set of zero or more associated namespaces to be

considered

» The set of namespaces is determined entirely by the types of the

function arguments. typedef names used to specify the types do

not contribute to this set

31

Koenig Lookup Details

ÁThe set of namespaces are determined in the following

way:

» If T is a fundamental type, its associated set of namespaces is

empty.

» If T is a class type, its associated namespaces are the

namespaces in which the class and its direct and indirect base

classes are defined.

» If T is a union or enumeration type, its associated namespace is

the namespace in which it is defined.

» If T is a pointer to U, a reference to U, or an array of U, its

associated namespaces are the namespaces associated with U.

» If T is a pointer to function type, its associated namespaces are

the namespaces associated with the function parameter types

and the namespaces associated with the return type. [recursive]

32

Koenig Lookup

33

Linking

ÁAn external declaration for a variable indicates

that the entity is defined elsewhere

 extern int x; // will be found later

ÁA function declaration indicates that the body is

defined elsewhere

ÁMultiple declarations may denote the same

entity

 extern int x; // in some other file

ÁAn entity can only be defined once

ÁMissing/multiple definitions cannot be detected

by the compiler: link-time errors

34

Include Directives = Multiple Declarations

ÁDefinitions are legal if textually identical (but

compiler canôt check!)

ÁHeaders are safer than cut-and-paste, but not as

good as a proper module system

35

Modules in Java

ÁPackage structure parallels file system

ÁA package corresponds to a directory

ÁA class is compiled into a separate object file

ÁEach class declares the package in which it appears

(open structure)

 Default: anonymous package in current directory

36

Dependencies Between Classes

ÁDependencies indicated with import statements:

ÁNo syntactic sugar across packages: use

expanded names

ÁNone needed in same package: all classes in

package are directly visible to each other

37

Modules in ML

ÁThere are three entities:

» signature : an interface

» structure : an implementation

» functor : a parameterized structure

ÁA structure implements a signature if it

defines everything mentioned in the

signature (in the correct way)

38

ML Signature

ÁAn ML signature specifies an interface for

a module

39

ML Structure

ÁA structure provides an implementation

40

Comparison

ÁRelation between interface and

implementation:

» Ada :

Åone package (interface) , one package body

» ML :

Åone signature can be implemented by many

structures

Åone structure can implement many signatures

41

2 Program Structure

Agenda

1 Session Overview

4 Conclusion

3 Object - Oriented Programming

42

ÁKey Concepts

» Objects

» Classes

ÁReview Session 6

» Textbook Section 7.7

Object-Oriented Data Types and Representation

43

ÁThe object idea:

» bundling of data (data members) and operations

(methods) on that data

» restricting access to the data

ÁAn object contains:

» data members : arranged as a set of named fields

» methods : routines which take the object they are

associated with as an argument (known as member

functions in C++)

» constructors : routines which create a new object

ÁA class is a construct which defines the data,

methods and constructors associated with all of

its instances (objects)

What is OOP ? (Part I)

44

ÁThe inheritance and dynamic binding ideas:

» classes can be extended (inheritance):

Åby adding new fields

Åby adding new methods

Åby overriding existing methods (changing behavior)

 If class B extends class A, we say that B is a subclass

or derived class of A, and A is a superclass or base

class of B

» dynamic binding : wherever an instance of a class is

required, we can also use an instance of any of its

subclasses; when we call one of its methods, the

overridden versions are used

» There should be an is-a relationship between a

derived class and its base class

What is OOP ? (Part II)

