Machine learning can accurately predict cardiovascular disease and guide treatment—but models that incorporate social determinants of health better capture risk and outcomes for diverse groups.

Photo credit: Aleutie/Getty Images

Research emphasizes the need for algorithms that incorporate community-level data, studies that include more diverse populations

Machine learning can accurately predict cardiovascular disease and guide treatment—but models that incorporate social determinants of health better capture risk and outcomes for diverse groups, finds a new study by researchers at New York University’s School of Global Public Health and Tandon School of Engineering. The article, published in the American Journal of Preventive Medicine, also points to opportunities to improve how social and environmental variables are factored into machine learning algorithms.

Cardiovascular disease is responsible for nearly a third of all deaths worldwide and disproportionately affects lower socioeconomic groups. Increases in cardiovascular disease and deaths are attributed, in part, to social and environmental conditions—also known as social determinants of health—that influence diet and exercise.

“Cardiovascular disease is increasing, particularly in low- and middle-income countries and among communities of color in places like the United States,” said Rumi Chunara, associate professor of biostatistics at NYU School of Global Public Health and of computer science and engineering at NYU Tandon School of Engineering, as well as the study’s senior author. “Because these changes are happening over such a short period of time, it is well known that our changing social and environmental factors, such as increased processed foods, are driving this change, as opposed to genetic factors which would change over much longer time scales.”

Machine learning—a type of artificial intelligence used to detect patterns in data—is being rapidly developed in cardiovascular research and care to predict disease risk, incidence, and outcomes. Already, statistical methods are central in assessing cardiovascular disease risk and U.S. prevention guidelines. Developing predictive models gives health professionals actionable information by quantifying a patient’s risk and guiding the prescription of drugs or other preventive measures.

Cardiovascular disease risk is typically computed using clinical information, such as blood pressure and cholesterol levels, but rarely take social determinants, such as neighborhood-level factors, into account. Chunara and her colleagues sought to better understand how social and environmental factors are beginning to be integrated into machine learning algorithms for cardiovascular disease—what factors are considered, how they are being analyzed, and what methods improve these models.

“Social and environmental factors have complex, non-linear interactions with cardiovascular disease,” said Chunara. “Machine learning can be particularly useful in capturing these intricate relationships.”

The researchers analyzed existing research on machine learning and cardiovascular disease risk, screening more than 1,600 articles and ultimately focusing on 48 peer-reviewed studies published in journals between 1995 and 2020.

They found that including social determinants of health in machine learning models improved the ability to predict cardiovascular outcomes like rehospitalization, heart failure, and stroke. However, these models did not typically include the full list of community-level or environmental variables that are important in cardiovascular disease risk. Some studies did include additional factors such as income, marital status, social isolation, pollution, and health insurance, but only five studies considered environmental factors such as the walkability of a community and the availability of resources like grocery stores. 

The researchers also noted the lack of geographic diversity in the studies, as the majority used data from the United States, countries in Europe, and China, neglecting many parts of the world experiencing increases in cardiovascular disease. 

“If you only do research in places like the United States or Europe, you’ll miss how social determinants and other environmental factors related to cardiovascular risk interact in different settings and the knowledge generated will be limited,” said Chunara. 

“Our study shows that there is room to more systematically and comprehensively incorporate social determinants of health into cardiovascular disease statistical risk prediction models,” said Stephanie Cook, assistant professor of biostatistics at NYU School of Global Public Health and a study author. “In recent years, there has been a growing emphasis on capturing data on social determinants of health—such as employment, education, food, and social support—in electronic health records, which creates an opportunity to use these variables in machine learning studies and further improve the performance of risk prediction, particularly for vulnerable groups.”

“Including social determinants of health in machine learning models can help us to disentangle where disparities are rooted and bring attention to where in the risk structure we should intervene,” added Chunara. “For example, it can improve clinical practice by helping health professionals identify patients in need of referral to community resources like housing services and broadly reinforces the intricate synergy between the health of individuals and our environmental resources.”

In addition to Chunara and Cook, study authors include Yuan Zhao, Erica Wood, and Nicholas Mirin, students at the NYU School of Global Public Health. The research was supported by funding from the National Science Foundation (IIS-1845487).

About the NYU School of Global Public Health
At the NYU School of Global Public Health (NYU GPH), we are preparing the next generation of public health pioneers with the critical thinking skills, acumen, and entrepreneurial approaches necessary to reinvent the public health paradigm. Devoted to employing a nontraditional, interdisciplinary model, NYU GPH aims to improve health worldwide through a unique blend of global public health studies, research, and practice. The School is located in the heart of New York City and extends to NYU's global network on six continents. Innovation is at the core of our ambitious approach, thinking and teaching. For more, visit http://publichealth.nyu.edu/.

About the New York University Tandon School of Engineering
The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, one of the country’s foremost private research universities, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit http://engineering.nyu.edu.

 

Press Contact

Rachel Harrison
Rachel Harrison
(212) 998-6797