Astronaut Buzz Aldrin walks on the surface of the moon near a leg of the Lunar Module. Neil A. Armstrong, Apollo 11 commander, took this photograph with a 70mm lunar surface camera. Source: NASA.

Astronaut Buzz Aldrin walks on the surface of the moon near a leg of the lunar module. This photograph was taken by Neil Armstrong with a 70mm lunar surface camera. Source: NASA.

It's hard to overstate the significance of the Apollo 11 moon landing on July 20, 1969. Whether viewed primarily as an unlikely feat of engineering, a definitive surge ahead in the Cold War, or even just really, really good live TV, Neil Armstrong's "giant leap for mankind" emerges as one of the defining moments of human history. To celebrate the 50th anniversary of this unprecedented technological and cultural milestone, the NYU News team asked faculty in various disciplines—including a Tandon professor who worked on the thermal analysis for the lunar module(!)—to weigh in on how the space program continues to shape their fields today.  

'Nobody Knew How To Do That': How Slide Rules Got Astronauts to the Moon and Back

Gunter Georgi, industry professor and course director for “Introduction to Engineering and Design,” Tandon, and former Northrop Grumman engineer

illustration of the lunar module

YOUTUBE MEDIA
I_5J1KRWaEs

A New Frontier for Aerospace Engineering

Richard Thorsen, mechanical and aerospace engineering department chair, Tandon

drawing of the lunar service module

“Aerospace engineering, like all engineering disciplines, has changed dramatically in the 50 years since the moon landing. Some drivers of that change have been the rapid advance of supercomputing—both in terms of speed and capacity—and the miniaturization of devices, which is very important in modern aerospace engineering, where weight is so important, particularly in spacecraft.

“The evolution of materials, too, during the past 50 years has changed aircraft and spacecraft design. The options are so much greater today than they were in the Apollo era.

“It's fascinating to think back on how well the Apollo program—and the lunar module in particular—performed, given what by today's standards were primitive tools.

“Today we would do it so much more easily and in some sense better because of the tools that we have. And these new tools permeate all of the aerospace industry, not just space exploration.”


When Journalists Became Cheerleaders

William E. Burrows, journalism professor emeritus and SHERP founder and director emeritus

illustration of men walking on the moon

“The first three Earthlings to reach the moon profoundly influenced American journalism by turning many of the reporters and editors who covered the epic feat of a lifetime—and who, by tradition, were supposed to ‘stay out of the story’—into unabashed, blatant, cheerleaders and aspiring space travelers themselves.

“Reporters and other correspondents who ordinarily produced stories that described the human race’s sordid side, including wars, purges, and other atrocities—and even those who covered the exploits of brave adventurers who climbed Everest, flew over the poles, and crossed oceans in frail craft—were so awed by the Apollo 11 astronauts being the first to reach another world and actually land on it that they became virtual celebrants themselves.

“Walter Cronkite, who reported that first landing on television, was so enthralled by the greatest story he would ever cover that he rode the centrifuge at Cape Canaveral in his shirt and tie.

“The moon landings changed journalism by literally raising the sights—the aspirations—of those who covered it. As their predecessors wanted to take to the air after Lindberg’s and Byrd’s glorious adventures, many who covered Apollo 11 and the flights that followed it became addicted to the infinite voyage and wanted to share that ultimate adventure. That, in the jargon of the trade, would make them part of the story.”


Astronaut Food for Everyone

Amy Bentley, professor of nutrition and food studies, Steinhardt

illustration of space helmet

“The postwar mid-20th century United States is often called the ‘golden age’ of food processing. While the mass production and processing of food began earlier, it was World War II that spurred technology, innovation, and product development. Military researchers, in alliance with food manufacturers, freeze-dried, pounded, packaged, dehydrated, and preserved food in order to feed the US military, as well as allies and newly-independent former Axis nations.

“After the war, food manufacturers turned their attention to American consumers eager to spend their dollars. In this era television came of age and advertised the food products, which were readily stocked in grocery stores. Consumers were fascinated by the conveniences and novelty of the new products: ready to eat canned spaghetti, instant coffee, TV dinners.

“The 1960s and 1970s were the heyday of the Apollo space program. The Cold War space race was in full swing, and JFK and presidents afterward felt the need to compete with the USSR on land and in space.

“As with WWII, the space program spurred on technologies focused on food preservation and product development to ensure that the men sent into space would be adequately nourished, both physically and psychologically.

“The entire country was enamored with NASA and the Apollo space program. Astronauts were genuine heroes, and fashions, furniture, and home décor—even popular culture (think of The Jetsons!)—reflected the public’s fascination with space.

“Food manufacturers flooded the airwaves with ads featuring products that either were developed for astronauts or were inspired by their need for compact, shelf stable, securely packaged meals that were ready to consume in a zero-gravity environment with no cooking technology available.

“Among the two most notable were Tang instant beverage, a powder that, when stirred into water, replaced orange juice, and Pillsbury Space Food Sticks, long Tootsie Roll-type candies that were either chocolate or peanut butter flavored and contained some nutrients.

“Kids thought they were totally cool, and in an age where mass-produced, shelf stable foods were ubiquitous, the products were wildly popular. As a kid during that period, my sisters and I begged my mom to buy both. Neither product was remarkable as far as taste was concerned, as I remember, but taste wasn’t really primary. The products felt modern, it was cool that the astronauts ate them too (or products like them), and we enjoyed their novelty. 

“I would say the legacy of space-inspired food products is significant. Americans still drink large quantities of beverages from powders (such as Country Time Lemonade and others), and Tang is still around. And while space food has come a long way, our food supply is still dependent on technologies developed and perfected in the mid- to late-20th century. Breakfast bars, energy ‘goo’ packets, and freeze-dried camping food are remnants. And instant coffee is still popular, too.”


The Birth of 'Software Engineering'

Ed Schonberg, professor emeritus of computer science, Courant

illustration of Apollo 11 watch

“The software used on the lunar lander is seen as a tour de force that would be almost inconceivable today. It had minuscule memory and incredibly slow hardware, from today’s point-of-view, and yet it supported concurrent processes with different priorities.

“The lead engineer was Margaret Hamilton, and the testing methodology she created no doubt had an impact on the future development of software engineering—a term that did not exist at the time.

“Since then, the methodology for the construction of reliable software systems has become much more rigorous, and makes use of formal verification tools, formal testing procedures, and high-level programming languages. The FAA requires such procedures to be used when constructing software systems for aerospace, and similar requirements apply to transportation systems and medical devices.” 


Better Dialysis, Thanks to NASA

Maya N. Clark-Cutaia, assistant professor, Meyers College of Nursing

illustration of astronaut's gloves

“Technologies developed for space travel have benefitted health and medicine in various capacities.

“One lesser-known innovation is a chemical process developed under a NASA contract that removes toxic waste from used dialysis fluid, or dialysate. Essentially, under this ‘sorbent’ system, a much smaller volume of dialysate is cleaned and replenished for use rather than being drained and requiring additional fluid from a continuous water source to maintain additional dialysis sessions.

“Now that there has been a paradigm shift back to peritoneal and home dialysis, as well as interest in green or renewable technologies, there has been a resurgence in research into sorbent technologies. These systems are often more compact and portable, require less electricity, and are easy to use.

“Additionally, cost reduction has made them particularly attractive for home maintenance hemodialysis. Sorbent technology is now being incorporated into both home and dialysis centers by one major for-profit company and for use with the first wearable kidney. I expect that this trend will only gain momentum.”


Moonage Daydreams

Alexander C.T. Geppert, incoming Charles A. Lindbergh Chair at the Smithsonian National Air and Space Museum, and associate professor of history and European studies, NYU Shanghai and the Center for European and Mediterranean Studies

illustration of Apollo 11 lunar command module

The summer of the moon did not last long. Even before the completion of the last of the six landings in December 1972, disillusionment had set in. With human spaceflight confined to low-earth orbit after the last astronaut had returned, the skies once again became the limit. Machine-generated photographs of Venus, Mars and Jupiter could not outrival human beings’ own photographs of Earth (just as, in 1840, NYU’s own John William Draper took the very first photograph of the moon) or images of footprints on the moon’s dusty surface.

Subsequent successes in planetary exploration were fated to be overshadowed by the memory, legacy, and nostalgia of Apollo.

Academics, commentators and critics were more eager to speculate on the momentousness of the moment before it occurred than to make sense of its significance once the frenzy had faded. The day after Apollo 17’s splashdown, noted science journalist John Noble Wilford wondered in the New York Times what it had all meant. Having discussed a plethora of possible interpretations, ranging from world history, theology, and environmentalism to technology and the notorious ‘If we can fly to the moon, then...’ trope, Wilford helplessly decided to leave it to the ‘historians of another time’ to find an answer.

It has taken those historians quite a while to understand that the Apollo moment was indeed a watershed, but for quite different reasons than the ones proposed at the time. After Apollo, the classical Space Age gave way to an era of space fatigue and planetized limits. But it also inaugurated a new era of global synchronicity that is infrastructurally space-based, yet rarely perceived as such. If the 1970s are now widely considered the crisis-ridden decade when our present began, it was the moon landings that made them so.