Federal Progressivity and State Regressivity

Esteban F. Klor‡

Department of Economics, New York University
269 Mercer St. 7th Floor, New York, NY 10003

November 2001

Abstract

This paper develops a positive theory of taxation in a federation of states. Its main motivation is to explain two facts about tax schedules in the US. The first one is that states' income tax rates are relatively low compared to federal income tax rates, in most cases below 5%. The second one is that the overall effective tax schedule at the state level is regressive in every state. The results show that in a federal system, income inequality between states is the crucial variable determining the federal tax rate. In fact, a positive relation exists between the inequality level and the federal tax rate, even if the income of the decisive-voter is above the mean. In such a scenario, with endogenous incomes, states' tax rates are relatively low because of incentives considerations, even if a relatively poor individual chooses this tax. Using a new data set on nonlinear tax schedules at the state level, empirical evidence is provided that supports the hypothesis of the paper. Most notably, the data points to the existence of a significant trade-off between the progressivity of the states and federal tax schedules, explained through income inequality between the states.

KEYWORDS: Fiscal Federalism, Political Economy, Income Taxation.

JEL classification: D72, H23, H77

‡Useful comments were provided by Sophie Bade, Jean-Pierre Benoît, Ronny Razin, Edward Wolff, as well as seminar participants at the University of Pennsylvania. I am especially indebted to Alessandro Lizzeri, Antonio Merlo and Efe Ok. All views and mistakes in the paper remain my own.

†Http://home.nyu.edu/~efk201. Email address: efk201@nyu.edu
1. Introduction

The main motivation for this paper comes from two observations about the tax schedules implemented in the states within the U.S. The first one is that states' income tax rates are relatively low, in most cases below 5%, with nine states having a zero income tax rate. The second perhaps more surprising regularity is that when the overall tax system in each state is taken into account (income taxes, property taxes and sales taxes), the effective tax schedule of almost every state is regressive; that is, the average tax rate decreases with pre-tax income.\(^1\) These facts (which are in stark contrast with the federal income taxation practice of any OECD country) are perhaps a consequence of the present federal political system that allows for overlapping income taxation.

Table 1, reproduced from the Institute on Taxation and Economic Policy (1996), illustrates these observations with data from 1995. This table shows the U.S.’s average personal income tax (P.I.T.) and total effective average tax (T.E.T.) for the 50 states and the District of Columbia.

Table 1: Personal Income Tax and Total Effective Average Tax, U.S. Averages, 1995.

<table>
<thead>
<tr>
<th></th>
<th>Lowest 20%</th>
<th>Second 20%</th>
<th>Middle 20%</th>
<th>Fourth 20%</th>
<th>Next 15%</th>
<th>Next 4%</th>
<th>Top 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.I.T.</td>
<td>1.2%</td>
<td>2.2%</td>
<td>2.8%</td>
<td>3.1%</td>
<td>3.5%</td>
<td>3.9%</td>
<td>4.6%</td>
</tr>
<tr>
<td>T.E.T.</td>
<td>12.5%</td>
<td>10.5%</td>
<td>9.8%</td>
<td>9.5%</td>
<td>9.0%</td>
<td>8.4%</td>
<td>7.9%</td>
</tr>
</tbody>
</table>

As it is readily seen from the table, while the personal income tax rate increases mildly with income, it remains at low levels even for incomes at the top of the distribution. The total effective tax schedule at the state level includes sales taxes and property taxes on top of the income taxes. Since the marginal propensity to consume (either durable and no durable goods) decreases with income, these two proportional statutory taxes have a regressive effective incidence. Given that the income tax rates are low, the regressive effect of the sales and property taxes more than offsets the progressive effect of the income taxes. Consequently, the effective incidence of the federal deduction offset, regressive taxes obtain in every state.

\(^1\) This is the case in 47 of the 50 states. If we add to the tax system in each state the effects of the federal deduction offset, regressive taxes obtain in every state.
average tax rate of the overall tax system at the state level is decreasing; i.e., the overall tax system is regressive for all the states within the U.S.2

In this paper, I construct a simple model of taxation and redistribution in a two-tier federal system consisting of a single central government and two state governments. The federation’s political process works as follows. In the first stage, individuals vote for a federal tax schedule that applies to all the residents of the federation, regardless of their state of residence. At a second stage, residents of each state decide which tax schedule to implement in that particular state. The political mechanism considered for all the elections is majority rule.

In the model, individuals are endowed with a productivity level and choose the amount of labor they supply as a function of the selected tax schedules. This introduces a trade-off between the level of output and its distribution, as was first modeled in a political economy context by Romer (1975), Roberts (1977), and Meltzer and Richard (1981). The point of departure of this paper is that individuals, who are immobile, reside in two different states and face overlapping taxes on their income. This framework brings a new source of heterogeneity to the model. Accordingly, individuals differ not only in their productivity level, but also in their state of residence. Consequently, new considerations (besides their own income) influence the individuals’ preferred tax schedules. The intuition is simple. While the state tax redistributes income within each state, the federal tax redistributes income between the states. To see this, note that the richer the individuals in one state, the higher their federal tax liability, and thus the higher this state’s proportional contribution to federal tax revenues. Yet, each state’s proportion of federal redistribution (which is distributed lump-sum) is given by the size of its population, independently of the state residents’ income. Hence, the effect of the federal tax schedule is to shift income from the rich to the poor state.

The results show that the existence of income inequality between the states plays a crucial role in the analysis. Residents of the rich state always oppose a positive federal tax rate.3 In contrast, residents of the poor state favor a positive federal tax rate, its size depending on the individual’s income. That is, individ-

2Washington State exhibits the greatest difference of total effective tax between the lowest 20% and top 1% of the population (13.2%). Delaware presents the lowest difference (-1.3%). When the federal deduction offset is taken into account the difference is positive even in Delaware (1.4%).

3Note that this is the case even for a poor individual in the rich state. The motivation of this individual is to keep as much as possible of her state’s income for redistribution within the state.
als residing in different states do not have monotonic preferences over the federal tax schedule with respect to their income. Consequently, a coalition of poor individuals (which constitute a majority of the federal population) never emerges. Actually, it turns out that the income of the decisive voter at the federal level is always above the median federal income (and may even be above the mean). This voter’s preferred federal tax rate is an increasing function of the income inequality between the states; so if this relatively rich individual is from a relatively poor state, she will support a positive rate of federal income tax. The underlying intuition is simple. Federal taxation accomplishes two goals in the eyes of the individuals: first, it redistributes income between the states, benefiting even the more productive residents of the poor state; and second, because of incentives considerations, the higher the implemented federal tax rate is, the lower the implemented state’s tax rate will be, even if the decisive voter at the state level has zero pre-tax income. This trade-off between the federal tax rate and the state tax rate thereby provides another reason for rich individuals in the poor state to support federal progressivity, ultimately bringing state regressivity.

From an efficiency standpoint, a federal social contract allowing a two-tier income taxation system is, in general, not optimal. Although the federal tax rate has a significant impact on the equilibrium income tax schedule in both states, this externality is partially ignored under a decentralized system of decision-making. In particular, when choosing the federal income tax rate, individuals in one state do not take into account the impact of the federal tax schedule on redistribution in the other state. Obviously, a policy that takes the externality created by the decentralized political process into account will bring a welfare improvement for all the residents of the federation, with greater total redistribution and lower taxation. This provides a possible role for the federal government: to implement policies that undo the non-optimality arising from decentralization. Gordon (1983) and Wildasin (1991) argue that one such policy is the implementation of federal matching grants. According to a system of federal matching grants, the federal government shares a proportion of the cost of state’s redistribution.

This paper finds that such a system would tend to decrease rather than increase total welfare of the federation’s residents. The intuition is as follows. A federal matching grants system reduces the cost of state redistribution paid by the state population. Consequently, individuals support higher income tax rates to finance greater redistribution at the state level. This in turn implies a high cost in federal

4A similar conclusion was obtained in the related normative literature (see Gordon (1983), Johnson (1988), Wildasin (1991), and Broadway et. al. (1998)).
matching grants, which have to be covered with high federal tax rates. Thereby, the implementation of this system causes higher levels of taxation and lower levels of redistribution.\footnote{This result contrast the one obtained in Wildasin (1991). In his paper, a higher-level government using corrective matching grants achieves a welfare improvement. In the present model, however, I assume that all the tax schedules are chosen by majority rule. This political mechanism increases the externalities of decentralized decision making, and thus the inefficiency of this social contract.}

In the second part of the paper, I expand the set of feasible tax schedules (both at the state and federal level) to allow for nonlinear taxation. Under this specification marginal tax rates can vary with income. This enables us to consider average rate regressive as well as average rate progressive tax schedules, in order to address the second observation depicted in Table 1: the regressivity of the overall tax system of every state of the US.

Using this framework I derive similar theoretical implications to the ones obtained in the first section. I should caution the reader, though, about several shortcomings of the model. Under nonlinear taxation, I am able to solve for the equilibrium state tax schedule but not for the federal tax schedule. Moreover, in this static model, without residential choices, only one kind of tax is imposed on the individuals. The regressivity of the overall tax system of every state, however, is obtained when we combine the income tax, property tax and sales tax schedules. Embedding the theoretical model in a dynamic framework where individuals also have savings and residential choices would be a closer approximation to reality. Unfortunately, such a generalization remains elusive at this preliminary stage of the analysis. These generalizations are left for future research.

In the last section of the paper, using a new data set constructed by the Institute on Taxation and Economic Policy, I estimate a number of implications of the theoretical model at hand. Most notably, this empirical exercise corroborates that a significant negative relationship exists between the progressivity of the states' tax schedule and the progressivity of the federal tax schedule. Furthermore, it is found that income inequality between states is crucial in explaining this significant relationship between the progressivity of the two levels of taxation. Finally, it is also found that the dispersion of the overall income distribution within each state (as measured by its variance) rather than the income of the median voter affects the progressivity of the states' tax schedule. These findings are in concert with the implications of the present model.
2. Linear Income Tax Schedules

2.1. The Benchmark Model

Consider a federation of two states, \(A \) and \(B \). There is a unit mass of individuals with a share \(p_A \) of them living in state \(A \). I assume that there is no mobility of individuals between the states. Each individual is endowed with a productivity level \(w \) and has no non-labor wealth. Therefore, there are two sources of heterogeneity between individuals: their productivity level and their state of residence. The population of each state is divided into two classes; in each state there is a continuum of poor individuals (with productivity equal to zero) with mass \(n^i_l > 1/2 \), and a continuum of rich individuals with productivity \(w_i > 0 \), with mass \(n^i_h = 1 - n^i_l \), \(i = A, B \).

Individuals choose the amount of labor they sell on a competitive market and receive a wage rate equal to their productivity. The production sector exhibits constant-returns-to-scale so that the wage rate is constant. Hence an individual with productivity \(w > 0 \) who supplies \(y/w \) units of labor earns pre-tax income \(y \).

The federation has a two-tier taxation system: there is a federal and a state income tax schedule. Both tier impose linear taxes that are used to collect revenues. These revenues are redistributed lump-sum to the population of individuals that are subject to that particular tax. The political process of the federation is such that the federal tax is imposed first on the individuals’ pre-tax income; later on every state imposes its own tax schedule on the remaining of the individuals’ pre-tax income. As an objection to the previous assumption one may argue that the current practice in the US is that both taxes are paid simultaneously. Yet, assuming that taxes are paid simultaneously would not change the nature of any of the following results. The adoption of this particular timing of the events only tries to reflect the strategic considerations of the citizens of a given state when choosing their own state’s tax schedule. When doing so, it is reasonable to suppose that these citizens take the federal tax schedule as given to them.\(^6\)

Formally, the federal tax schedule is represented by a tax rate \(f \in [0, 1] \) and a redistribution level \(r_f \in \mathbb{R}_+ \) such that the federal budget constraint,

\[
 r_f = f \left[p_A n^A_h y_A + p_B n^B_h y_B \right],
\]

is satisfied. Similarly, the tax schedule of state \(i \) is given by the tax rate \(s_i \in [0, 1] \),

\(^6\)The assumption that the federal government acts as a Stackelberg leader is common in the literature. See for example Boadway et al. (1998).
where the state’s redistribution level \(r_i \in \mathbb{R}_+ \) is obtained from
\[
 r_i = p_i s_i (1-f) n_i^h y_i.
\]

Thus, individuals’ net income is
\[
 c_i = (1-f) (1-s_i) y_i + r_f + \frac{r_i}{p_i}.
\]

Given both tax schedules, an individual with productivity \(w \) chooses pre-tax income \(y(w_i, s_i, f) \) that maximizes \(u(c, \frac{y}{w}) \) subject to (2.1). Throughout this section, I assume the following quasi-linear preferences over consumption and labor supply:
\[
 u(c, \frac{y}{w}) = c - \frac{\alpha}{\beta + 1} \left(\frac{y}{w} \right)^{\beta+1}, \quad c, y \geq 0
\]
where \(\alpha \) is a positive constant, and \((1/\beta) > 0 \) is the (constant) elasticity of labor supply. With this class of preferences, redistribution (at either governmental level) does not affect labor supply decisions and every individual with positive productivity level chooses to work.

While this is a highly restrictive specification of preferences, it captures the incentive effects of taxes (consumption-leisure trade-off). Moreover, this specification removes a source of considerable complication in the analysis that follows. In particular, in the presence of distorting taxes, redistribution may induce productive individuals to refrain from working, causing an indeterminacy of the state’s tax rate. If no individual in the state has a positive income, there is a continuum of \(s_i \) which are a feasible equilibrium tax rate. This indeterminacy creates complications when solving for the equilibrium federal tax rate.

For these preferences, given the federal and state tax schedules, the optimal

\footnote{This particular form of individuals’ net income is a consequence of the sequential timing in which the taxes are imposed. Had I assumed that both taxes are imposed simultaneously, we would have obtained that \(c(w) = (1-f-s) y^f + r_f + r_i/p_i \) (see Gouveia and Masia (1998)). As already pointed out, adopting this different specification will not change the nature of any result of this paper.}

\footnote{If no individual in the state has a positive income, there is a continuum of \(s_i \) which are a feasible equilibrium tax rate. This indeterminacy creates complications when solving for the equilibrium federal tax rate.}
pre-tax income of individual with productivity $w > 0$ is

$$y_i = w_i \left[\frac{(1 - s_i)(1 - f)w_i}{\alpha} \right]^{\frac{1}{\beta}}. \quad (2.3)$$

Note that for these preferences, the pre-tax income is not a function of redistribution, either at the federal or state level.

In the next section I solve for the equilibrium state and federal tax schedules.

2.2. Federal and States’ Tax Schedules

The political process is such that at a first stage the entire federation votes over the federal tax schedule, and at a second stage states’ tax schedules are elected. Only the Condorcet winners are implemented in equilibrium, that is, taxes that obtain the support of at least half of the population against any other feasible tax. Whenever the above criterion is satisfied by many tax schedules each is implemented with equal probability.

In this section I first solve for the states’ tax schedules as a function of the federal tax schedule, and then for the implemented federal tax schedule.

2.2.1. Preferences Over the States’ Tax Schedules

Given the individuals’ pre-tax income, the federal level of redistribution is

$$r_f = f \left(\frac{1 - f}{\alpha} \right)^{\frac{1}{\beta}} \sum_{i=A,B} p_i n_i^h w_i \left[(1 - s_i)w_i \right]^{\frac{1}{\beta}}, \quad (2.4)$$

while the state’s level of redistribution is given by

$$r_i = p_i s_i (1 - f) n_i^h w_i \left[\frac{(1 - s_i)(1 - f)w_i}{\alpha} \right]^{\frac{1}{\beta}}. \quad (2.5)$$

Since individuals with zero productivity conform a majority in each state, they choose by majority rule which tax schedule will be implemented in their state. To find her preferred state tax schedule, a poor individual from state i maximizes

9For this and all subsequent maximization problems, first order necessary conditions and second order sufficient conditions are satisfied. The details can be obtained from the author upon request.
her indirect utility function over the set of feasible state’s tax schedules. The
individual’s indirect utility function is given by substituting equations (2.4) and
(2.5) back into (2.2):

\[V_l^i = s_i(1-f)n^h_iw_i\left[\frac{(1-s_i)(1-f)w_i}{\alpha}\right]^\frac{1}{\alpha} + f \left(\frac{1-f}{\alpha}\right)^\frac{1}{\alpha} \sum_{j=A,B} p_j n^b_jw_j [(1-s_j)w_j]^\frac{1}{\alpha}. \]

(2.6)

The solution to the associated maximization problem is given next.

Lemma 1. Given a federal tax rate \(f \), state \(i \)’s equilibrium tax rate is:

\[s_i = \begin{cases}
\frac{\beta}{\beta + 1} - \frac{fp_i}{(1-f)(\beta+1)} & \text{if } f < \frac{\beta}{\beta + p_i}, \\
0 & \text{otherwise}.
\end{cases} \]

This lemma illustrates the trade-off between federal and states’ tax rates: states’ tax rates are decreasing in the federal rate (see Figure 2.1). Incentive considerations are the primary reason behind this result. If the federal tax rate is already high, a high state tax rate lowers the state’s redistribution level. That is, the maximum level of state’s redistribution \(r^\text{max}_i \) (the maximum point of the state’s Laffer curve) is a decreasing function of the federal tax rate. When \(f \) is equal to zero \(r^\text{max}_i \) attains its greatest value, which decreases monotonically in \(f \), until \(r^\text{max}_i \) reaches zero for \(f \geq \frac{\beta}{\beta + p_i} \).

In addition, the state’s income tax rate decreases with the state’s share of the overall population \(p_i \). As \(p_i \) increases (for a fixed \(f \)), more of the total income in state \(i \) is transferred from the state to the federal level and will be used for redistribution between the states. Therefore, less income is available for redistribution within the state. A reduction in the state income tax rate is required to partially offset this disincentive.

Finally, note that \(s_i \) is a concave function of \(f \); that is, the required decrease in \(s_i \) (for a given increase in \(f \)) is increasing in the level of \(f \). The sequential structure of the taxation process is the reason behind this result. From equation (2.3) we see that the individuals’ optimal pre-tax income is not a linear function of the sum of the tax rates \(s_i + f \). Because of this multiplicative structure, poor individuals have to compensate rich individuals with more significant decreases in
s (for a given increase in f), as the level of f increases.\footnote{Mathematically, totally differentiating y and setting $dy = dw = 0$, we obtain:

$$0 = (1 - s)ds + (1 - f)df,$$

which implies that $ds/df < 0$. From a second differentiation of the last expression we obtain that also $d^2s/df^2 < 0$.} If the poor would not compensate the rich this way, the state’s total income would considerably decrease with f, and consequently the state’s level of redistribution would decrease as well.

The following subsection analyses how the federal tax rate is determined.

2.2.2. Preferences Over the Federal Tax Schedule

In the first stage of the political process, a federal tax schedule is chosen by majority rule. When deciding on their preferred federal tax rate, individuals take into account that states’ tax rates react to the federal rate according to Lemma 1. A difficulty arises upon choosing the federal tax rate because preferences over f are not monotonic in w. Since individuals are heterogeneous in their state of residence, all the poor individuals in the federation will never form a coalition to
extract as much income as possible from rich individuals. In fact, if neither of
the four groups constitutes a majority of the population (this will be the case if
\(p_i n_i^i < 1/2, i = A, B \)) the decisive-voter for the federal tax rate is an individual
with high productivity, even though this productivity level is above the median
productivity level. More surprisingly, if inequality in total productivity between
the states is above a certain threshold, rich individuals from the relatively poor
state will be the decisive voters choosing to implement a high federal tax rate.
By behaving this way, these individuals’ aim is to increase redistribution between
the states and decrease redistribution within each state.

The individuals’ preferences over tax rates are given by maximizing their indi-
crect utility function (equation (2.6)) over the set of feasible federal tax schedules,
subject to the states’ reaction functions found in Lemma 1. The resulting prefer-
ences over \(f \) are a function of the inequality in total productivity between the
states. Let us define

\[
I \equiv \frac{n_B^h}{n_A^h} \left(\frac{w_B}{w_A} \right)^{\frac{1+\beta}{\beta}} \quad (2.7)
\]
as the measure of inequality in total productivity between the states. When \(I \)
is close to one, inequality between the states is relatively low; the farther away \(I \)
is from one, the more unequal the states’ total productivity levels. The inequality
level \(I \) combines the original total inequality in productivity between the states
with the elasticity of labor supply. For high values of \(\beta \), the relative
importance of the individuals’ pre-tax income is low, and inequality between the
states is mainly given by the ratio of the share of high productivity individuals.
As the elasticity of labor supply increases, the difference between the individuals’
productivity plays a more significant role in the resulting inequality between the
states. Whenever both states impose the same \(s_i, I \) is equal to the ratio of the
states’ total income.

The proposition below presents the preferred federal tax rate for low ability
individuals from state \(A \), when the population is evenly distributed between the
two states (\(p_A = p_B = 1/2 \)). This simplifying assumption allows us to obtain
closed-form solutions that highlight the basic forces at work in the model. The
general case exhibits basically the same properties; its analysis is relegated to the
appendix.\(^{11}\)

Proposition 1. The preferred federal income tax rate for low productivity

\(^{11}\)The assumption that \(p_A = p_B = 1/2 \) is maintained in all the forthcoming results that appear
in the main body of the paper.
Figure 2.2: Preferred Federal Tax Rate for Low Productivity Individuals from State A

The function f_i^A, which represents the preferred federal tax rate for individuals from state A, is given by:

$$f_i^A = \begin{cases}
0 & \text{if } I \leq 1, \\
\frac{2\beta(I - 1)}{I + \beta(I - 1)} & \text{if } 1 < I \leq \frac{\beta + 1}{\beta}, \\
\frac{2\beta}{2\beta + 1} & \text{if } \frac{\beta + 1}{\beta} < I.
\end{cases}$$

Figure (2.2) depicts these preferences. To understand the intuition behind Proposition 1, we need to realize that the federal income tax rate provides a benefit to low productivity individuals, but also imposes a cost on them. The benefit is straightforward: a positive federal tax rate implies a positive federal redistribution level. The cost imposed by the federal tax rate is a consequence of the trade-off between federal and state redistribution levels: more federal redistribution implies less state redistribution. Therefore, poor individuals will evaluate which tax rate they should increase to maximize their own utility, knowing that in equilibrium the other tax rate will decrease.
For example, suppose that the total productivity of state A is higher than that of state B. In this case, low productivity individuals living in A will receive federal redistribution if the federal tax rate is positive. A positive federal tax rate, however, will also have two negative effects on these individuals’ welfare: it will transfer income from state A to state B, and it will lower the states’ redistribution level. If instead poor individuals in A manage to set the federal tax rate equal to zero, they appropriate (through an increase in s_A) part of the transfer between the states to themselves. Poor individuals in state A prefer this last alternative as it maximizes their total income. If it is the case that $I > 1$, the opposite argument applies, and poor individuals in A will prefer a positive federal tax rate.

How high is their preferred federal tax rate? It depends entirely on I. As inequality between the states increases, the gains from redistribution between the states for poor individuals residing in A increase as well. Therefore, they prefer a higher federal tax rate. This explains why f_I^A is increasing in I. The cost this group pays for these gains is a lower redistribution at the state level. Eventually, s_A reaches zero and there is no more room to trade-off an increase in the federal rate for a decrease in the state’s rate of income taxation, even for greater levels of inequality between the states. A further increase of the federal tax rate above this level (without a decrease in s_A) will have a large disincentive effect and will actually lower federal redistribution. This defines the second threshold value of I, above which both the federal and state income tax rates are constant, $f_I^A = 2\beta/(2\beta + 1)$ and $s_A = 0$ respectively.

Due to the symmetry of the analysis, poor individuals in state B have preferences exactly opposed to that presented in Proposition 1. For them, the relevant cutoff values of inequality are equal to I^{-1}. More specifically, these individuals’ preferred federal income tax rate, f_I^B, is decreasing in I. It reaches a maximum of $2\beta/(2\beta + 1)$ when $I < \beta/((\beta + 1)$, and a value of zero when the inequality level is greater or equal to one. In the intermediate range $f_I^B = [2\beta(1 - I)]/[1 + \beta(1 - I)]$.

From this argument follows that preferences over f are not monotonic in the productivity level. As a consequence of that, the individual with the median income is not the decisive voter in this framework. Given that the overall population is equally divided between the two states, none of the four different groups of individuals will comprise a majority. Therefore we need to study the preferences over f of high-productivity individuals to find out if some consensus may emerge.

\footnote{Whenever the implications of changes in I are analyzed, total productivity at the federal level ($n_A^n w_A + n_B^n w_B$) remains constant.}
between the different groups. Only under such a consensus there will exist some federal tax rate able to reach the required support of at least half of the population against any other possible tax rate. Those preferences appear in Proposition 2.

Proposition 2. The preferred federal income tax rate for individuals with high productivity from state A, f^A_h, is:

$$ f^A_h = \begin{cases}
0 & \text{if } I \leq x, \\
\frac{2\beta \left[(\beta + 1)(I - 1)n^A_h - 1 \right]}{(\beta + 1)n^A_h[I(\beta + 1) - \beta]} - \beta & \text{if } x < I \leq \bar{x}, \\
\frac{2\beta}{2\beta + 1} & \text{if } \bar{x} < I.
\end{cases} $$

where $x \equiv 1 + \frac{1}{(\beta + 1)n^B_h}$ and $\bar{x} \equiv 1 + \frac{1+n^h_B}{\beta n^B_h}$.

Comparing the previous proposition to Proposition 1 we can conclude that f^A_l and f^A_h look very similar. Indeed, both functions are increasing in the inequality level, meaning that also rich individuals will prefer a positive federal tax rate for high inequality levels. Actually, the same intuition applies here as in Proposition 1, with one caveat. As it was the case with poor individuals, also rich individuals derive a benefit and suffer a cost from the federal tax schedule. For positive federal income tax rates individuals with high productivity have to pay a proportion of their income in federal taxes, this is the cost. The benefits are both experienced at the state level (from a decrease of the state’s tax rate), and at the federal level (from federal redistribution). For a high enough inequality level the benefits exceed the costs, and thus the preference for positive federal tax rates.

The main difference between f^A_l and f^A_h are the cutoff values. While f^A_l is positive for any I above one, f^A_h remains equal to zero until I reaches a higher value. In order to understand this, remember from Lemma 1 that s is a concave function of f; that is, when f is low, an increase in f causes a relatively small decrease in s. Therefore, for low levels of I, the gains that rich individuals in state A obtain from a positive federal tax rate are small compared to the losses they face (higher overall taxation). As inequality between the states increases, the gains that these individuals accrue from federal redistribution increase as well. Eventually, benefits outweigh costs, defining the cutoff value \bar{x} above one.

Combining Propositions 1 and 2 we observe that $f^B_l \geq f^B_h \geq f^A_h \geq f^A_l = 0$ for $I < 1$, and $f^B_l \leq f^B_h \leq f^A_h \leq f^A_l$ for $I > 1$.\(^{13}\) Hence, the federal tax rate proposed

\[^{13}\text{For } I < 1, \text{ we obtained in Propositions 1 and 2 that } f^A_h = f^A_l = 0. \text{ When } I > 1 \text{ it is simple...} \]
by a high productivity individual will always obtain a majority over a tax rate proposed by a low productivity individual, even though this last group comprises more than half of the overall population. That is,

Corollary 1. The decisive-voter over the federal income tax schedule is a high-productivity individual. Consequently the equilibrium federal income tax rate is given by \(f^i_h(I) \).

According to this corollary, the income of the decisive voter is above the median. This was somehow expected from the moment we established that preferences over federal tax rates were not monotonic on income. Due to this non-monotonicity, the one-to-one relation between the individuals’ productivity and their preferred tax rate does not hold; hence the result above.

In the next section I focus on the question whether a federal social contract with a two-tier income taxation system is efficient.

2.3. Efficiency Analysis

This section shows that the current federal social contract consisting of a two-tier income taxation is not efficient for a wide range of inequality levels. As already mentioned in the introduction, when choosing the federal income tax rate, an individual in state \(i \) ignores the effect of \(f \) on the redistribution level of the other state. Yet, the federal tax rate has a significant impact on the income tax schedule implemented in the other state. Therefore, the federal tax rate creates an externality that is ignored under a decentralized system of decision making. A policy that takes this externality into account will bring a welfare improvement for all the citizens of the federation, with greater redistribution and lower taxation.

This nonoptimal redistributive policy is reminiscent of Gordon (1983), Johnson (1988), Wildasin (1991) and Boadway et. al. (1998). These papers develop a normative analysis of taxation in a federation of states. In them, a benevolent social planner maximizing a Benthamite welfare function over the utilities of current residents of a state fails to take into account either vertical or horizontal externalities. A vertical externality relates to the effects of the states’ policies on federal revenues. A horizontal externality is caused by the mobility of individuals

\[
\frac{2\beta(I - 1)}{I + \beta(I - 1)} > \frac{2\beta \left[(\beta + 1)(I - 1)n^A_h - 1 \right]}{(\beta + 1)n^A_h \left[I(\beta + 1) - \beta \right] - \beta}
\]

if and only if \(I > 0 \), which is always the case.
between states and the impact of the states’ taxes on nonresidents of a particular state. As a consequence of these two externalities inefficiency arises.

Several differences between the approach adopted in this paper and the one carried on in the previous literature are worth mentioning. First, the previous papers abstracted from political economy considerations, the main focus of the present paper. Second, in this paper, horizontal externality is assumed away since individuals are immobile. In addition, given that individuals (and not a social planner) choose the federal tax rate through majority vote, vertical inefficiency has an opposed effect to the one obtained in previous papers. Both in Johnson (1988) and in Boadway et. al. (1998), states ignoring the effects of their taxes on federal revenues tend to implement a higher than optimal state’s income tax rate. In contrast, in the current paper states’ tax rates are low while the federal tax rate tends to be higher than optimal.

To formalize matters, consider what happens to the federation’s total redistribution level as inequality increases. Total redistribution of the federation is given by

$$R(I) \equiv r_f + r_A + r_B = \frac{\mathcal{P}}{2} \left[\frac{(1 - s)(1 - f)}{\alpha} \right]^{\frac{1}{\beta}} [f + s(1 - f)] \quad (2.8)$$

where

$$\mathcal{P} \equiv (n_A^h w_A^{1+\beta} + n_B^h w_B^{1+\beta})$$

is the overall productivity level of the federation, which is constant. If the equilibrium federal tax rate is f^A_h then R is constant for $I < \underline{x}$ and $I > \overline{x}$. For intermediate values of I, however, total redistribution is strictly decreasing in I.

Lemma 2. $R(I)$ is strictly decreasing in I whenever $\underline{x} < I < \overline{x}$.

So, as the inequality level between the states increases, total taxation increases as well but total redistribution decreases. That is, for any $I > \underline{x}$ the federation as a whole ends up at the decreasing part of its Laffer curve - a nonoptimal outcome.

Proposition 3. The federal social contract consisting of a two-tier income taxation is not optimal whenever $I > \underline{x}$.

The intuition is straightforward. When the federal income tax rate is positive, the loss in redistribution in the more productive state (which is not taken into

14 Although the results are stated for the case where $p_A = p_B$, as I said earlier, they could be generalized to the case where $p_A > p_B$. Thus, from now on I take f^A_h as the equilibrium federal income tax rate.
account by the decisive voter) more than offsets the gain in redistribution in the less productive state.

An important reason behind this inefficiency is that the federal tax schedule is the only available policy instrument that redistributes income between the states. Clearly, a social planner implementing lump-sum transfer between the states and eliminating one layer of taxation would achieve a Pareto improvement. But even abstracting from the possibility to implement lump-sum transfers, for sufficiently high inequality levels, a Pareto improvement can be achieved eliminating states’ income tax schedules.

Proposition 4. There exists a critical inequality level \(I^* < \bar{x} \) such that for every \(I > I^* \) eliminating states’ income tax schedules results in a greater utility level for all the individuals in the federation.

What is the reason that drives the states’ to this inefficient outcome, even when a different feasible strategy would imply greater utility for all the individuals? The answer to this question is related to a usual source of inefficiency: the impossibility to credible commit to a non-equilibrium strategy. Since poor individuals constitute a majority in each state, they choose the equilibrium income tax schedule at the state level. Suppose these individuals promise to choose a state’s tax rate of zero, no matter what is the level of the federal income tax rate. In this situation, the resulting federal tax rate equals \(\beta/(\beta + 1) \), the one preferred by poor individuals in both states. Notwithstanding their promise, poor individuals in both states will select a positive state’s tax rate that allows them to enforce more redistribution in the second stage of the political process. Rich individuals will anticipate such a deviation in the first period and behave accordingly. Hence, the resulting inefficient equilibrium is inescapable without a commitment mechanism.

But even if a device that outlaws income tax schedules exists only in one of the states, an efficient outcome will not be reached.\(^\text{15}\) In this situation, poor individuals in the other state are enjoying the best of both worlds. They receive more federal redistribution given that high productivity individuals in the other state have higher incomes due to incentive effects, and they also receive redistribution at the state level, which there is no reason to give up by setting the state’s tax rate at zero. Hence, for poor individuals the implementation of a state’s in-
come tax schedule is a dominant strategy. Consequently, we obtain an inefficient equilibrium.

Another policy instrument that might achieve an efficiency improvement is the implementation of a system of federal matching grants. Next subsection analyzes this policy instrument.

2.3.1. Federal Matching Grants

In models of fiscal competition like the one being developed in this paper, one role for the federal government is to implement policies that undo the nonoptimality arising from decentralized state decision-making. For example, Wildasin (1991) shows how a system of matching grants from a federal government to state governments can neutralize the horizontal externalities produced by states’ policies, helping the federation reach an efficient outcome. It is then natural to explore the implications of such a policy using the current framework.

In the mentioned papers, the federal government is nothing but a benevolent social planner correcting inefficiencies of lower levels governments. Notwithstanding the insights of that normative approach, in this paper we are committed to a democratic principle, which is a different normative guideline. In particular, I assume that the decisions at the federal level are still adopted by majority rule. When this is the case, a system of federal matching grants in general increments, rather than diminishes, the resulting inefficiencies. That is, under a federal matching grants system total income taxation further increases, and total redistribution decreases for a wide range of inequality levels. While this conclusion may look surprising at first, upon reflection it is even expected. Because matching grants reduce the cost of redistribution at the state level (which is financed in part now by the federal government) individuals in the poor state choose a higher equilibrium state tax rate to finance greater redistribution at the state level. This in turn implies greater matching grants, and consequently, a higher federal income tax rate.

Under a system of federal matching grants, state’s i tax schedule is given by

\[
\delta r_i = p_i s_i (1 - f) n_i^h y_i, \tag{2.9}
\]

where \(\delta \in (0, 1)\) measures the state’s share of the cost of a dollar’s worth of redistribution. The balanced budget constraint condition at the federal level of
government implies that the federal tax schedule is equal to

\[r_f + (1 - \delta)(r_A + r_B) = f \left[p_An_A^h y_A + p_Bn_B^h y_B \right]. \] (2.10)

As it is readily seen from the previous two equations, under a matching grants program the state is only responsible for only a share of its redistribution expenses. The consequence of this will be a popular support for more redistribution. Since the federal government will pay part of this greater level of redistribution, a higher federal tax rate is required by the balanced budget constraint condition. This leads to higher income taxation levels and lower total redistribution.\(^{17}\)

Proposition 5. Under a federal matching grants program, if

\[I \leq \frac{2(\delta + n_A^h)}{n_A^h [(1 + \delta)(\beta + 1) - 2]}, \]

then the overall implemented income tax rates are greater and the total redistribution level of the federation is smaller than without the matching grants program.

That is, the effect under a democratic system is the opposite of the one obtained when the federal government is represented by a benevolent social planner.

So the original question that motivated the previous analysis remains: Is it possible to obtain a Pareto improvement in a democratic federation of states? This is a very interesting issue, but an exhaustive analysis of it remains beyond the scope of the present paper. The answer is then left open for future research.

The next subsection provides an empirical illustration of the main implications of the model.

2.4. Empirical Implications

Corollary 1 above already pointed out the first implication of the model: in a federal system of taxation there is not a one-to-one relation between the individuals’ income and their preferred federal tax schedule. This result stands in sharp contrast to the ones obtained in similar models with only one tier of income taxation.

\(^{17}\)This result cannot be derived for any inequality level without imposing some (sufficient) conditions on the parameters. For example, notice that the range where the result is not guaranteed is empty for \(\beta \geq (1 + 2n_A^h + \delta)/(1 - 2n_A^h - \delta) \), with \(1 - 2n_A^h - \delta > 0 \).

Another possibility would be to impose restrictions only on \(\delta \). In fact, it can be shown that there exists one critical value of \(\delta^* \), such that the stated inefficiency will be obtained for all \(\delta < \delta^* \), for any \(I \).
(see, e.g., Romer (1975), Roberts (1977) and Meltzer and Richard (1981)). In those models, monotonicity between the individuals’ productivity level and the rate of their preferred tax schedule is obtained. Hence, under universal suffrage the decisive voter is the individual with the median income. This is not the case in a federal system of taxation. Rather, in a federal system of taxation, the decisive voter is a relatively rich individual who, for a wide range of parameters values, chooses to implement a positive federal income tax rate. More strikingly, an interesting situation may arise when the income of the decisive voter is above the federation’s mean income, yet she selects a positive federal income tax rate. The following proposition formalizes this observation for individuals in state A.

Proposition 6. If $I < I \leq \frac{2 - n_A}{n_A}$ then high productivity individuals’ income in state A is above the federation’s mean income, yet $f_h^A > 0$.

According to Proposition 6, for a certain range of I, as income inequality in a state increases, redistribution in that state decreases. To see this, consider what the model predicts when the productivity of rich individuals in state A decreases while the productivity of rich individuals in B increases. Such changes increase inequality between the states. Hence, if the implemented federal income tax schedule is f_h^A (an increasing function of I), the resulting federal tax rate will increase as well. Consequently, both states’ income tax rates will decrease, even if the income of the median voter relative to the mean income in state A increases while in state B decreases; that is, either a positive or negative relation between the income of the decisive voter and the state’s level of redistribution may arise in a federal model of income taxation. This is perhaps the reason why several studies using data from the US concluded that there is no empirical support to the claim that a positive relation between income inequality and government redistribution exists - the main hypothesis of Meltzer and Richard (1981).

So what should we expect in a federal system of income taxation? According to this model, what really matters is not income inequality within each state, but income inequality between the states. In fact, the inequality level between the states is the key variable determining both f and s. As stated in Proposition 2, there is a positive relation between the inequality level and the federal tax rate, while a negative relation is obtained between I and the states’ tax rates.

18 While r_A will certainly decrease, whether r_B decreases or increases depends on the relative change in w_B.

19 See for example Goveia and Masia (1998), and Rodriguez (1999).
Are these hypotheses supported by the data? While it is difficult to provide a definitive answer, Figures (2.3) and (2.4) present a first exploration.

Figure (2.3) depicts the per capita income of nine states (each belonging to a different region in the US) between 1940 and 2000. As it is well documented in the growth literature, the figure shows a high level of convergence between these regions over time. Obviously, convergence of states’ incomes means that inequality between them decreases.

The resulting decrease in inequality implies, according to the model, lower federal marginal tax rates and higher states’ marginal tax rates. These two sequences are depicted in Figure (2.4). We can see in this figure the significant decrease in the top marginal rate of the federal income tax. This top rate oscillated be-

20 A graph including all the states exhibits the same features, but is more cumbersome. There is convergence also between the regions. I decided to present the data at the state level because regions are not political entities able to choose their income taxes.

21 See, for example, Barro and Sala-i-Martin (1995), chapter 11, for an empirical examination of the convergence hypothesis using US data.
The second sequence in the same figure depicts the average top marginal income tax for the 50 states and the District of Columbia. While the absolute changes in this sequence are not as significant as the ones presented in the federal tax rate, there is a clear tendency upward. During the analyzed period the average top marginal income tax rate increased more than 50%, from 3.5% in 1950 to 5.5% in 2000. More importantly, the number of states implementing an income tax

Feenberg and Rosen (1986), in a rigorous empirical study, calculated the states’ effective marginal tax rate for high, middle and low income individuals for the years 1977-1983. They found that the states’ marginal tax rates increased from 3.27% to 4.19% for low-income individuals; from 4.4% to 5.62% for middle-income individuals; and from 5.5% to 5.93% for high-income individuals.
increased steadily during this period. By 1940, only 30 states had implemented an income tax schedule, albeit with very low rates. This number increased to 40 by the mid 1970s, with seven states implementing an income tax schedule between 1967 and 1971, right after Johnson lowered the top federal marginal income tax by almost 20%. Connecticut, in 1991, was the last state so far to implement a positive income tax rate.

Clearly, these figures are insufficient to prove that the reduction in inequality between states is the reason (certainly not the sole reason) behind the changes in marginal income taxes. Although the facts that the figures present support the main implication of the model, a richer data set accompanied by a rigorous empirical analysis are required to determine whether the federal and the states’ income tax schedules are connected through the inequality level between the states. I make a first pass at this issue below.

In the next section, the analysis shift to non-linear tax schedules in order to account for the regressivity of the overall tax system of every state in the US.

3. Non-Linear Tax Schedules

3.1. Theoretical Framework

I now turn to the second observation mentioned in the introduction: the regressivity of the overall tax system for every state in the US. Even if this fact is puzzling at a first look, upon reflection is not so surprising after all. To see this, notice that states relay mainly on three different taxes to collect revenue: income taxes, sales taxes and property taxes. Given that the marginal propensity to consume is decreasing in income, the effective sales and property taxes are average rate regressive; that is, for these taxes the ratio of tax liabilities over the individual’s income decreases with income. Since the income tax (which is the only progressive tax schedule used) is low, as a result the overall effective tax system at the state level is regressive.

To explain this strong regularity we need to enlarge the set of feasible tax schedules. In particular, we need to allow also for nonlinear tax schedules so the marginal tax rate can vary with income. This enables us to consider regressive as

\footnote{Already by 1930 an economic model of taxation developed by the National Industrial Conference Board recommended a top marginal rate for the state income tax of about 6% (National Industrial Conference Board (1930)). At the time the average top marginal rate was below 3%. From the figures just presented it turns out that the 6% level was only reached 55 years later.}
well as progressive tax schedules, in order to examine the link between federal progressivity and state regressivity.\footnote{One way to obtain regressive tax schedules in the space of linear taxes, is to allow for a negative tax rate. In fact, the previous model will account for regressive tax schedules (a negative tax rate) for high inequality levels if we adopt this extension of the tax space. I choose to change the set of feasible tax schedules, however, for two reasons. First, it seems unrealistic that negative tax rates are being implemented in every state of the US. And second, the new specification will include in the analysis a higher moment of the states’ income distribution - the variance - which has an important explanatory power of the progressivity of each state’s tax schedule.} Allowing for nonlinear tax schedules introduces new difficulties when solving the general model. Therefore, in this section I only solve for the state’s tax schedule as a function of the federal tax schedule. From this result, I derive a number of empirical implications that are tested in the next section using the available data. The theoretical model presented in this section builds on a static version of Bénabou (2000), adding a second tier of taxation.\footnote{This simple static version of Bénabou’s model is rich enough to account for the main question raised in this paper, but fails to capture the richness of his model.}

Formally, this section focuses only in one state of a federation of states. This state is populated by a continuum of individuals denoted by \(i \in [0, 1] \subset P\), where \(P\) is the federation’s population. Each individual is endowed with a productivity level \(w\). The productivity level is assumed to be lognormal distributed: \(\ln w^i \sim \mathcal{N}(m, \Delta^2)\).\footnote{The lognormal distribution is a good approximation of empirical income distributions (Lydall (1968)). It also leads to tractable results, and allows for an unambiguous definition of inequality, as increases in the variance (\(\Delta^2\)) shift the Lorenz curve outward.} Individual \(i\)’s preferences are represented by the following utility function:

\[
u(c, \frac{y}{w}) = \ln c - \frac{\alpha}{\beta + 1} \left(\frac{y}{w} \right)^{\beta + 1}, \tag{3.1}\]

where all the parameters were defined in page (7).

As it was assumed in the linear taxation model, the federation’s fiscal policy comprises a two-tier taxation system: there is a federal tax schedule \(\tau_f\) and a state tax schedule \(\tau_s\), imposed sequentially on the individuals’ income. In order to focus on the issue of tax progressivity, attention is restricted to a class of tax schedules that can be ordered according to their global degree of progressivity. I thus posit that the federal tax schedule satisfies

\[y - \tau_f(y) = (y_i)^{1-f(r_f)^f} = \tilde{y}_i,\]

where \(\tilde{y}_i\) is the income of individual \(i\) after paying the federal tax, and \(f\) is a scalar. Parameter \(f\) (called the residual progression of the federal tax schedule)
represents the elasticity of post-tax income to pre-tax income. A tax schedule is progressive (i.e., the average tax rate increases with pre-tax income) if its residual progression is positive. If $f < 0$ the tax schedule is regressive. Furthermore, the progressivity of the tax schedule (according to the Lorenz domination criterion) increases with its degree of residual progression. In other words, for any given distribution of pre-tax income and tax schedules τ_f^1 and τ_f^2, if $f_1 > f_2$, then the distribution of post-tax income under τ_f^1 Lorenz dominates the one under τ_f^2 (Jakobsson (1976)). In the analysis that follows, confiscatory rates ($f > 1$) are excluded as not incentive compatible.

The balanced government budget constraint determines the level of redistribution r_f. From the definition of τ_f it follows that

$$\int_P (y_i)^{1-f}(r_f)^f \, di = \int_P y_i \, di.$$

The state’s tax schedule τ_s is imposed on the individuals after federal taxes have been paid. This tax is given by:

$$\hat{y}_i - \tau_s(\hat{y}_i) = (\hat{y}_i)^{1-s}(r_s)^s = c_i,$$

where the break-even level r_s is determined by:

$$\int_0^1 (\hat{y}_i)^{1-s}(r_s)^s \, di = \int_0^1 \hat{y}_i \, di.$$

The interpretation of the parameters of the state’s tax schedule is analogous to the one presented for the parameters of the federal tax schedule.

Given τ_f and τ_s, the optimal pre-tax income of individual i is:

$$y_i = w_i \left[\frac{(1-s)(1-f)}{\alpha} \right]^{\frac{1}{1-s}}.$$

Substituting (3.3) into (3.2) we obtain the state’s level of redistribution r_s,

$$s \ln r_s = f s \ln r_f + s(1-f)m + (1-f)^2(2s-s^2)\Delta^2 + \frac{s(1-f)}{\beta + 1} \ln \left[\frac{(1-s)(1-f)}{\alpha} \right],$$

which implies that individual i’s indirect utility function is

$$V(w_i, \tau_f, \tau_s) = (1-s)(1-f) \ln w_i + f \ln r_f + s(1-f)m + (1-f)^2(2s-s^2)\Delta^2$$

$$+ \frac{(1-f)}{\beta + 1} \ln \left[\frac{(1-s)(1-f)}{\alpha} \right] - \frac{(1-s)(1-f)}{\beta + 1}.$$

(3.5)
Individual i’s preferred policy is given by the first-order condition $\frac{\partial V_i}{\partial s} = 0$: \[(1 - s)(1 - f)\Delta^2 + (m - \ln w_i) - \frac{s}{(\beta + 1)(1 - s)} = 0. \]

The above equation, which is quadratic in s, always has a unique solution where s is less than one. The fully characterization of it is

$$ s = 1 + \frac{(m - \ln w_i)(\beta + 1) + 1}{2(1 - f)\Delta^2(\beta + 1)} - \frac{[(m - \ln w_i)^2(\beta + 1) + 4(1 - f)\Delta^2]^{1/2}}{2(1 - f)\Delta^2(\beta + 1)^{1/2}}. $$ \hfill (3.6)

The previous equation delivers several intuitive results. First, the progressivity of the individual’s preferred tax schedule decreases with the individual’s productivity. Also, a negative relation exists between the absolute value of s and the elasticity of labor supply. This is because a more elastic labor supply increases the deadweight loss from taxes and transfers, whether progressive or regressive, which cause individuals to distort their labor supply away from the first-best level. And finally, more relevant for the purpose of the current analysis, this solution provides several empirical implications, which are gathered in the following

Proposition 7. For any $s < 1$,

1. The residual progression of the state’s tax schedule decreases with the residual progression of the federal tax schedule.
2. If the individual with the median productivity level is the decisive-voter, then the residual progression of the state’s tax schedule increases with the state’s income inequality.

The intuition is simple. The first claim is nothing but the non-linear version trade-off between federal and states’ tax progression: states’ tax progression is decreasing in the degree of federal tax progression. As before, this is because of incentive considerations. If the federal tax rate is already extracting most of the income of rich individuals, a very progressive state tax schedule reduces significantly the labor supply of productive individuals and thus the state’s aggregate income. As a matter of fact, this trade-off may account for regressive states’ tax schedules: there exists a level of f, $f^* < 1$, such that for every $f \geq f^*$, τ_s is regressive ($s < 0$). Whether such a progressive federal tax schedule emerges in

\footnote{When solving the maximization problem I assume that the state is small (both with respect to its income and its population). Therefore, the federal level of redistribution is not a function of the state’s tax schedule. That is, $\partial r_t / \partial s = 0$.}
equilibrium is an important question. As pointed out before, I am still unable to answer it; solving for the federal tax schedule in this framework is complicated given that individuals’ preferences over f are not monotonic in the individuals’ productivity level. My conjecture is that an equivalent analysis to the one presented with the linear tax schedules will arise in this framework. Note that preferences over f are monotonic in the individuals’ productivity for a given state of residence. Consequently, there shall be a decisive-voter in the pivotal state that will split the federal electorate in half. The poorer the state of the decisive voter, or the productivity level of this voter, the more progressive the federal tax schedule should be. Eventually, a critical inequality level between the states will make the decisive voter choose a federal tax schedule as progressive as f^*.

The second claim is a particular case of Proposition 7 in Bénabou’s paper (2000, pp. 109). This result states that in a more unequal society, without efficiency gains from redistribution, there is greater political support for redistribution. As inequality increases, so does the progression of the tax schedule, even if this will reduce aggregate income.

A sufficient condition for this result is that the individual with the median income is the decisive-voter. As argued among others by Bénabou, this is not a realistic assumption. It is well known that poor and less educated individuals have a relatively low propensity to register, turn out to vote, and give political contributions. As a consequence of this, the income of the decisive-voter turns out to be located above the median income. If the decisive voter income’s is above the median income, we obtain a U-shaped relationship between the residual progression of the tax schedule and income inequality. That is, for a certain range of inequality levels, progression declines with inequality.

The next subsection tests the empirical implications stated in Proposition 7.

28 A state is pivotal if its inequality level is such that less than 50% of the federal population lives in states with higher I, and less than 50% of the population lives in states with lower I.

29 See, for example, Rosenstone and Hansen (1993) for empirical evidence supporting this claim.

30 How strong is this departure from the one-person one-vote rule? Bénabou provides such a calculation (2000, pp. 107). According to his results, the income of the decisive voter is located at the 56th percentile of the income distribution. While the income bias is relatively moderate, it is much stronger for other forms of political participation, like money contributions (74th percentile) and campaign related work (68th percentile).

31 Due to the inexistence of the relevant data, I cannot test empirically this particular formulation of the model. Therefore, I decided not to include a formalization of this scenario. The interested reader can find a formal model and a thorough discussion in Bénabou (2000).
3.2. Empirical Analysis

3.2.1. Data Description

This subsection presents empirical tests of the main implications of the model using cross-sectional data. Ideally, one would use a panel data set consisting of the states’ residual progression index, the federal residual progression index, and the variance of income at the state level, together with each state relative income (as a proxy to the inequality between states). With such a data set, one would be able to test for the impact over time of income inequality between the states on the federal and states degree of progression. Moreover, using the income inequality within each state, it could also be possible to account for the existent differences in residual progression among states at any given point in time. The binding constraint, however, is data: no such panel exists. The closest substitute is a new data set constructed by the Institute on Taxation and Economic Policy, which allows me to calculate the degree of residual progression in 1995 for each state of the US and the District of Columbia.32

Using the aforementioned data set, I am able to calculate s, the degree of residual progression of the overall tax schedule for each state. Formally, the degree of residual progression is defined as the elasticity of post-tax income to pre-tax income:

$$RP(y) = \frac{1 - M(y)}{1 - T(y)},$$

where M denotes the marginal tax rate and T denotes the average tax rate.33 $RP(y)$ measures the actual percentage increase in post-tax income. A reduction in $RP(y)$ must be interpreted as an increase in progression. Whenever $RP(y) < 1$ (this is the case if and only if $M < T$) the tax schedule is progressive at income level y; the tax schedule is regressive at income y whenever $RP(y) > 1$.

It is inconvenient that residual progression, defined this way, decreases when the tax becomes more progressive. Therefore, following Lambert (1993, pp. 161),

32To the best of my knowledge, this is the only data set available that provides the effective average tax liability for nine different income ranges of the population, for every state. Unfortunately, this data set is only available for 1995. A detailed description of the data sources appears in Appendix A.

33This measure was first proposed by Musgrave and Thin (1948) and is still widely used in the literature of income taxation.
I use the following normalization

\[RP^*(y) = \frac{1}{RP(y)} \]

to solve that particular problem.

Clearly, \(RP^*(y) \) is a function of income.\(^{34}\) Yet, in the theoretical model, the residual progression of the tax schedule is assumed constant for every income level. Therefore, the average degree of residual progression is used as a proxy to the residual progression of a tax schedule.

To further link this measure to the one used in the theoretical model, I subtract one from the average \(RP^* \); that is,

\[s = RP^* - 1. \]

Hence, as defined in the model: a tax schedule is progressive if and only if its index of residual progression is positive; and the progressivity of the tax schedule increases with \(s \).

The index of residual progression of the federal tax schedule is obtained using a similar procedure. The data used to calculate the index of residual progression of the federal tax schedule was constructed by the Congressional Budget Office (1998). This data set provides the effective average tax rates by income distinguishing between five different types of families.\(^{35}\) Using this data, and each state’s demographic characteristics, a residual progression index of the federal tax schedule is obtained for each state. Given that the federal tax schedule is shared by all the states, there is not a lot of variability on \(f \) across the states. While this may weaken the results to certain extent, the level of residual progression of the federal tax schedule at the state level captures the different way the same statutory tax schedule affects the effective tax liability of different populations.\(^{36}\)

\(^{34}\)Given the data available, I am able to calculate the degree of residual progression in every state for nine different income ranges.

\(^{35}\)In particular, it provides the effective average tax for families with children under 18 with: (a) one adult; or (b) two or more adults. And for individuals and families with no children under 18 where: (a) the head is 65 or more years old; (b) the head is less than 65 years old; and (c) individuals.

\(^{36}\)For example, the effective average tax rate is lower for a family with children than otherwise. Hence, the residual progression of the federal tax schedule in a given state increases with the frequency of families with children living in that state.
Finally, the different parameters from the income distribution of each state are obtained from the Current Population Survey of 1992.37 These parameters are calculated at the family level to match the similar definition used in the progression indexes.38 In particular, using the family’s adjusted gross income I calculate the variance of the income distribution for each state, and also construct the index of income inequality between the states, I. The formal generalization of I to an expression for 51 observations is

$$
I_j = \frac{\sum_{i=1}^{51} \mu_i - \mu_j}{50 \mu_j}
$$

where μ_i is the mean family adjusted gross income of state i. As defined in the theoretical model this index is always positive; and there is a negative relationship between I_j and the mean family income of state j: the greater I_j is, the poorer the state.

Table 2 presents descriptive statistics for the variables used in the empirical exercise.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>St. Dev.</th>
<th>Median</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>-0.071</td>
<td>0.016</td>
<td>-0.072</td>
<td>-0.030</td>
<td>-0.116</td>
</tr>
<tr>
<td>f</td>
<td>0.108</td>
<td>0.005</td>
<td>0.107</td>
<td>0.116</td>
<td>0.095</td>
</tr>
<tr>
<td>Δ^2</td>
<td>1.2e+12</td>
<td>7.9e+11</td>
<td>1.2e+12</td>
<td>3.1e+12</td>
<td>1.7e+11</td>
</tr>
<tr>
<td>I</td>
<td>1.017</td>
<td>0.133</td>
<td>1.027</td>
<td>1.404</td>
<td>0.753</td>
</tr>
</tbody>
</table>

A quick look at the table reveals some interesting facts. As expected, the states’ index of residual progression is negative for all the states. The more progressive tax is implemented in Delaware, while Washington State has the most regressive tax schedule. This is not surprising. On the one hand, Washington State makes a heavy use of sales and excise taxes, which are regressive. On the other hand, this state does not have an income tax, the only progressive tax schedule. Hence the regressivity of its’ tax schedule. In contrast, Delaware relays

37These parameters are taken with a lag of three years, so they can reasonable be regarded as exogenous in these regressions.

38Calculations carried on at the individual level deliver similar results. These results can be obtained from the author upon request.
heavily in an income tax (which is marginal-rate progressive) and makes low use
of sales and excise taxes. Consequently, the tax schedule of this state is the less
regressive among all the states of the US.

The index of federal residual progression is positive for all the states, and as
predicted, has a low variance. The maximum value corresponds to the District
of Columbia, while the minimum corresponds to Oklahoma. One reason for this
is a relatively wealthy population in DC ($I_{DC} = 0.917$), and a relatively poor
population in Oklahoma ($I_{OK} = 1.122$). Although important, this is not the only
reason. There are richer states than DC and poorer states than Oklahoma. As
was previously explained, some demographic characteristics of these states also
influence their index of residual progression. For example, a high percentage
of two-adults families in Oklahoma increases the average tax liability in that state,
which brings a decrease in the residual progression of the tax schedule. In DC,
the high percentage of families with only one adult has exactly the opposite effect.

The statistics depicted in Table 2 for the remaining two variables are not
new. States in the Pacific, Mid Atlantic and New England regions are relatively
rich (the minimum I value is obtained by New Jersey), while the poorer states
are situated in the East South Central region (Mississippi obtains the maximum
value of I). Note that the mean of I is lower than its median. Hence, a majority of
states are poorer than the average (this is the case for 29 of the 51 observations).
This implies, according to the model, that the population of almost 60 percent of
the states supports redistribution through the federal income tax.

With respect to within states inequality, North Dakota (a relatively poor state)
presents the smallest income inequality. Surprisingly, the state with the greatest
income inequality, Georgia, is also relatively poor; the value of its inequality index
($I_{GA} = 1.052$) is even above the median I.

In some of the estimated specifications, I included several control variables.
These variables are: (1) states’ spending in redistribution (as a ratio of state’s
income) either through the public supply of private goods (PG), or through pure
redistribution (PR); 39 (2) a dummy variable that reflects the political affiliation
of the governor ($Gov = 1$ if the governor belongs to the Republican Party; $Gov = 0$
otherwise); (3) the share of the state’s legislators that belong to the Republican
Party (Leg). The main purpose of including these variables is to capture exogenous characteristics of the state’s residents, not present in the model, like
preferences for equality, that may influence the chosen degree of progression of

39 These two definitions of spending where first defined by Meltzer and Richard (1983), and
were also used by Gouveia and Masia (1998).
the state’s tax schedule.

3.2.2. Results

Table 3 reports the results of the empirical estimation of the model. The data in general support the main hypotheses, but I must note some reservations. On one hand, for all the different specifications used in the estimations, the coefficient of the federal tax schedule is significant and negative. Hence, the results are consistent with the existence of a trade-off between federal and state progressivity. On the other hand (and also robust for all the different specifications), the coefficient of the variance of the states’ income distribution is negative and significant as well. While the sign of this coefficient contradicts its theoretical implication derived in Proposition 7, several reasons may bring this result. As mentioned above, abstracting from the idea that all the individuals in the state participate equally in the political process, and allowing for efficiency gains from redistributions, may cause such a negative relation (Bénabou (2000)).

Table 3: Estimation of the State’s Tax Residual Progression

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{f})</td>
<td>-0.581</td>
<td>-0.334</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-14.18)</td>
<td>(-2.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.21)</td>
<td>(-2.67)</td>
<td>(-2.10)</td>
<td>(-2.07)</td>
</tr>
<tr>
<td>(\hat{f})</td>
<td>-0.588</td>
<td>-0.401</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-14.70)</td>
<td>(-2.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PG)</td>
<td>1.168</td>
<td>1.136</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.57)</td>
<td>(2.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PR)</td>
<td>-1.005</td>
<td>-0.946</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.94)</td>
<td>(-2.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Gov)</td>
<td>-0.009</td>
<td>-0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.93)</td>
<td>(-2.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Leg)</td>
<td>-0.014</td>
<td>-0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.02)</td>
<td>(-0.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.9545</td>
<td>0.9615</td>
<td>0.9573</td>
<td>0.9629</td>
</tr>
</tbody>
</table>

Heteroskedasticity-consistent t-statistics in parenthesis.
In particular, Column (1) of the table presents the estimated coefficients of equation (3.6). According to this specification, there is empirical evidence of an existent trade-off between state and federal progression. In Column (2) the same specification is utilized but now controlling for several variables that may explain the progressivity of the state’s tax schedule. The main results are robust for this different specification.

A main objection to the previous results is that s and f may be simultaneously determined. In fact, according to the preceding analysis on linear income taxes, s and f are linked through income inequality between the states. To solve this problem I estimate the model using a two-stage least squares estimation. In the first step f is regressed on I. The predicted value of f, \hat{f}, is then used as a regressor in the second step, where s is the dependent variable. The results of this last regression are reported in column (3). From this column we see that \hat{f} (the variability in f explained by I) is significant and negative. This reinforces the message that comes out from the previous section: income inequality between states is a significant variable linking the degrees of federal and state progression. We obtain similar conclusions when controlling for each state’s tastes for equality in column (4).

4. Conclusion and Extensions

This paper developed a positive theory of taxation in a federation of states. The results show that the existence of income inequality between the states plays a crucial role in the analysis. In fact, the decisive voter’s preferred federal tax rate is an increasing function of the income inequality between the states; so if this relatively rich individual is from a relatively poor state, she will support a positive rate of federal income tax. A high rate of federal income tax cause (because of incentive considerations) a low rate of taxation at the state level, ultimately bringing state regressivity.

Another result worth mentioning is that a federal social contract allowing a two-tier income taxation system is, in general, not optimal. The reason for this is that under a decentralized system of decision-making the federal tax schedule causes externalities that are partially ignored. Moreover, it is also found that a system of federal matching grants brings higher tax rates. Higher tax rates further decrease total redistribution, and thus the total welfare of the federation’s residents.

Finally, in the second part of the paper, it is showed that similar theoretical
implications are obtained under nonlinear taxation. These implications are empirically tested using a new data set constructed by the Institute on Taxation and Economic Policy. The results of the estimation showed that a significant negative relationship exists between the progressivity of the states’ and the federal tax schedules. Furthermore, it is found that income inequality between the states is crucial in explaining this significant relationship between the progressivity of the two levels of taxation. Finally, it is also found that the dispersion of the overall income distribution within each state (as measured by its variance) affects negatively the progressivity of the states’ tax schedule. These findings are in concert with the implications of the present model.

Although it delivers new and interesting results, the model is highly stylized. Therefore, this paper developed a first exploration rather than a complete characterization of the subject being studied. As such, the model provides us a challenge to being generalized in several directions.

The model abstracts from mobility of individuals between the states. Including this feature to the model adds another layer to the individual problem. Relatively higher tax rates in one state may lead to the emigration of productive individuals to the other state. Yet, the concentration of rich individuals in one state may lead to the immigration of poor individuals. Given that poor individuals comprise a majority of the population, this will result in higher tax rates. An equilibrium in such a framework is a fixed-point in which no individual wishes to move or alter its labor supply, and no state wishes to change its tax rate given the tax rate chosen by the other state. To guarantee the existence of such an equilibrium is a challenging task. Using this framework it is very difficult to come up with a set of simple sufficient conditions for existence. A change in policy implies migratory movements that imply a change in the composition of the population and, subsequently, another change in policy. This cycle may continue endlessly.

In any event, I presume that the inclusion of mobility considerations may help us understand the coexistence of high federal income tax rates with low state’s income tax rates. Simply put, the federal government has a monopoly on the power and ability (however imperfect) to coerce citizens into paying taxes. In the stylized democracy model of this paper, the federal government is nothing more than the aggregation of the preferences of a majority of individuals. Given that at the federal level the poor population will always constitute a majority, federal tax rates will tend to be high.40 While federal income taxes are inescapable to

40 Note that when mobility is added to the model, the individuals’ heterogeneity given by their state of residence is no longer crucial. Hence, in this setting, a coalition of poor individuals will
the rich population, such is not the case with states’ income tax schedules. Tax competition among the states will emerge and drive states’ income tax rates to low levels.

Another important extension is to introduce a general distribution of productivity levels for each state. I believe that the obtained monotonicity of the preferences of the individuals of a given state over the federal tax rate would be preserved. Yet, it is not simple to prove it since the characterization of the states’ income tax rate as a function of the federal tax rate becomes cumbersome.

Similar difficulties arise when trying to generalize the individuals’ preferences to any utility function exhibiting “nice behavior.” For general utility functions, the individuals’ labor supply is a function of the state and federal redistribution level. As already mentioned, corner solutions cause the indeterminacy of the states’ tax schedule and thus of the federal tax schedule as well.

Finally, the model with nonlinear taxation can be improved upon to better reflect reality. The main direction is to differentiate between income, consumption, and housing expenditures and allow for three different tax schedules. In this framework, individuals would vote over composition of tax schedules. The insurmountable obstacle so far, is to find an equilibrium given the multidimensionality of the policy space. Hopefully, future research will help us understand the dynamics of overlapping income taxation in a federal system imposing less restrictions on the set of feasible taxes.

emerge to extract as much income as possible from rich individuals through the federal income tax schedule.
Appendix A: Data Description

I. Main Sources of Data

A. States’ residual progressivity measure: Institute on Taxation and Economic Policy (ITEP), 1996. The ITEP has build a microsimulation tax model that allow for a comprehensive study of the combined incidence of the major taxes affecting individuals and businesses at the state and local level. The main source of the data for this tax model comes from federal income tax returns (for the filer population) and the Decennial Census (for the non-filer population). Combined, they compose a comprehensive database of approximately 700,000 individual records calibrated to match state by state population, income and other aggregate totals. The economic unit of the data used in this tax model is the family.

II. Definitions of Government Spending

PG— Public supply of private goods includes: higher education, local schools, other education, hospitals, sanitation, other natural resources, non-highway transportation, utilities and liquor stores.

PR— Pure redistribution includes: Aid to Families with Dependent Children, Medicaid, unemployment compensation, supplemental security income, housing and urban renewal, and other insurance.
Appendix B: Proofs

Proof of Lemma 1. Low-productivity individuals’ decision problem takes the form:

$$\max_{s_i \in [0,1]} s_i (1-f)n_i^h w_i \left[\frac{(1-s_i)(1-f)}{\alpha} \right]^\frac{1}{\beta} + f(1-f)^\frac{1}{\beta} \sum_{i=A,B} p_i n_i^h w_i \left[\frac{(1-s_i)w_i}{\alpha} \right]^\frac{1}{\beta}.$$

Strict concavity in s_i is easily verified on the relevant domain, and the first-order conditions directly yield the stated results.

Proof of Propositions 1 and 2. In this section I solve the general problem for any $p_A \geq \frac{1}{2}$. The results stated in the respective propositions follow directly by setting $p_A = \frac{1}{2}$.

Since $p_A \geq \frac{1}{2}$, I solve the maximization problem for an individual living in state A. A similar procedure yields the results for a resident of state B.

The individuals’ maximization problem takes the form:

$$\max_{s_i, f \in [0,1]} s_A (1-f)n^A_i w_A \left[\frac{(1-s_A)(1-f)w_A}{\alpha} \right]^\frac{1}{\beta} + f(1-f)^\frac{1}{\beta} \sum_{i=A,B} p_i n_i^h w_i \left[\frac{(1-s_i)w_i}{\alpha} \right]^\frac{1}{\beta} + \gamma \frac{\beta}{\beta+1} \left[(1-s_A)(1-f)w_A \right]^\frac{\beta+1}{\beta}$$

subject to $s_i = \left\{ \begin{array}{ll} \frac{\beta}{\beta+1} - \frac{fp_i}{(1-f)(\beta+1)}, & \text{if } f < \frac{\beta}{\beta+1}; \\ 0, & \text{otherwise}. \end{array} \right.$

where $\gamma = 0$ for low productivity individuals and $\gamma = 1$ for high productivity individuals.

To simplify the exposition, I denote the total weighed productivity in each state by

$$a \equiv n^h_A w_A^{\beta+1} \quad \text{and} \quad b \equiv n^h_B w_B^{\beta+1}.$$

The Lagrangian for the maximization problem above is:

$$\mathcal{L}(f, s_A, s_B, \lambda_A, \lambda_B, \theta_A, \theta_B; I) = s_A (1-f)a \left[\frac{(1-s_A)(1-f)}{\alpha} \right]^\frac{1}{\beta} + f(1-f)^\frac{1}{\beta} \sum_{i=A,B} p_i n_i^h w_i \left[\frac{(1-s_i)w_i}{\alpha} \right]^\frac{1}{\beta} + \gamma \frac{\beta}{\beta+1} \left[(1-s_A)(1-f)w_A \right]^\frac{\beta+1}{\beta} + \sum_{i=A,B} \left\{ \theta_i s_i - \lambda_i \left[\frac{\beta}{\beta+1} - \frac{fp_i}{(1-f)(\beta+1)} - s_i \right] \right\}.$$

The corresponding first-order conditions are
function and by replacing dates for optimality. Let us see which ones offer candidates for optimality.

The first candidate is given by $\lambda_i \geq 0$, and $\theta_i = 0$. This case correspond to the interior solution where states’ tax schedules are positive. These tax rates (as a function of f) are given by Lemma 1. Substituting these two equations into the first three FOCs we obtain the following system of three equations:

$$\lambda_A = \left[1 - \frac{(1-p_A)f}{\alpha(\beta+1)}\right]^{\frac{1}{2}} \gamma a \left(\frac{1-f}{n_h^A}\right) \geq 0,$$

(4.1)

$$\lambda_B = \left[1 - \frac{(1-p_B)f}{\alpha(\beta+1)}\right]^{\frac{1}{2}} \frac{fbp_A}{\beta[1-(1-p_B)f]} > 0,$$

(4.2)

and by replacing λ_i in L_f according to (4.1) and (4.2) we obtain an implicit function $H(f, I)$ that provides the unique solution $f^*(I)$:

$$H(f, I) = \left[1 - \frac{(1-p_A)f}{\alpha(\beta+1)}\right]^{\frac{1}{2}} \gamma a \left(\frac{1-f}{n_h^A}\right) + \frac{\beta + 1}{\beta(1-f)} \left[p_A (1-(1-p_A)f)^\frac{1}{2} + I p_B (1-(1-p_B)f)^\frac{1}{2} \right] +$$

$$+ \sum_{i=A,B} \frac{\lambda_i p_i}{(1-f)(\beta+1)} = 0.$$
\[
\begin{align*}
\frac{1 - (1 - p_A)f^{1/\alpha}}{\alpha(\beta + 1)} & \geq \frac{\gamma p_A}{n^h_A(\beta + 1)(1 - f)} + \frac{1 - (1 - p_B)f^{1/\alpha}}{\alpha(\beta + 1)} \geq \frac{\alpha f p^2_B}{\beta(\beta + 1)(1 - f)} \\
= 0
\end{align*}
\]

The necessary condition

\[
0 \leq f^*(I) \leq \frac{\beta}{\beta + p_A}
\]
delivers the first and second threshold values of \(I\). \(^{41}\)

Whenever \(p_A > 1/2\), there is a range of inequality levels such that \(s_A\) is equal to zero while \(s_B\) is positive. This is the second relevant range in which \(\lambda_A = 0\) and \(\theta_A > 0\) while \(\lambda_B > 0\) and \(\theta_B = 0\). Substituting for \(s_A\) and \(s_B\) into the first and the third FOC’s allow us to solve for \(f(I)\) and \(\lambda_B(I)\). The relevant range for the inequality level is obtained by checking the following condition for \(f\),

\[
\frac{\beta}{\beta + p_A} < f < \frac{\beta}{\beta + p_B}.
\]

which is necessary for this case to be a solution.

Finally, the corner solution is reached when \(\lambda_i = 0\) and \(\theta_i > 0\), \(i = A, B\). In this case

\[
f = \frac{\beta}{\beta + p_B} \quad \text{and} \quad s_A = s_B = 0.
\]

So far, the proof above demonstrated how \(f^A\) is defined to both poor and rich individuals. Moreover, the proof stated clearly how the thresholds values are defined. To complete the characterization of the federal tax rate as illustrated in the body of the paper, it remains to show that \(f^A\) is increasing in \(I\) for all the residents of state \(A\). This task is carried on in

Claim 1: \(f^A\) is nondecreasing in \(I\).

Proof: Clearly the claim holds true for \(I \leq 1 + \frac{\gamma}{n^h_A(\beta + 1)} \equiv I_1\), given that in this range \(f^A\) is always equal to zero. The claim is also true for

\[
I \geq \frac{(\beta + 1)(n^h_A p^2_A + \gamma p_B)}{n^h_A p_B [\beta(1 - p_A) - (p_A - p_B)]} \equiv I_2
\]

\(^{41}\)The bordered Hessians providing the second order sufficient conditions for this and the following cases are cumbersome. The details can be obtained from the author upon request.
since f^A is constant in this range. Therefore, we need to prove that $f^A(I)$ is increasing for $I_1 < I < I_2$. Recall that in this range $f(I)$ is implicitly defined by (4.3). Note that

$$\frac{\partial H}{\partial I} = \left(\frac{1}{\alpha(\beta + 1)} \right)^{\frac{1}{\beta}} p_B (1 - (1 - p_B)f) \left(1 - \frac{f}{\beta(1 - f)} \right) +
\left[1 - (1 - p_B)f \right]^{1-\frac{1}{\beta}} \frac{\alpha fp_B}{\alpha(\beta + 1)} \frac{\alpha fp_B}{\beta(\beta + 1)(1 - f)}$$

which is positive for $f \leq \beta/(\beta + p_A)$. Since $\partial H/\partial f$ is negative, the claim follows from the implicit function theorem.

Proof of Lemma 2. If $I < \bar{x}$ by Proposition 2 we know that $f < 2\beta/(2\beta + 1)$, which implies (by Lemma 1) that

$$s = \frac{\beta}{\beta + 1} - \frac{f}{2(1 - f)(\beta + 1)}. \tag{4.4}$$

Substituting (4.4) into (2.8) yields

$$R(I) = \chi(2 - f)^{\frac{1}{\beta}}(f + 2\beta)$$

where

$$\chi \equiv \frac{a + b}{4(\beta + 1)} \left[\frac{1}{2\alpha(\beta + 1)} \right]^{\frac{1}{\beta}}$$

is a constant. Differentiating R with respect to I we obtain

$$\frac{\partial R}{\partial I} = \chi(2 - f)^{\frac{1}{\beta}} \left[1 - \frac{f + 2\beta}{\beta(2 - f)} \right] \frac{\partial f}{\partial I},$$

which is always negative in the relevant range.

Proof of Proposition 3. From Lemma 2 we know that total redistribution is strictly decreasing in this range. It remains to show that total income taxation is greater than $\beta/(\beta + 1)$, the tax rate that corresponds to the highest level of total redistribution. For $I > \bar{x}$ we have that

$$s + f = \frac{\beta}{\beta + 1} - \frac{f}{2(1 - f)(\beta + 1)} + f$$
which is greater than \(\frac{\beta}{\beta+1} \) if and only if
\[
f < \frac{2\beta + 1}{2\beta + 2}.
\]
This will always be the case since the maximum possible value of \(f \) in equilibrium, \(\frac{2\beta}{2\beta+1} \), is strictly less than \(\frac{2\beta+1}{2\beta+2} \).

Proof of Proposition 4. When
\[
I \geq x
\]
the equilibrium income tax schedules are \(s_i = 0 \) and \(f^A_i = \frac{2\beta}{(2\beta + 1)} \). Without states’ income taxes, poor individuals in both states have the same preferences over the federal tax schedule. Hence, they would form a majority at the federal level. Their preferred federal tax rate in this case is \(f = \frac{\beta}{(\beta + 1)} \). Under this tax rate, federal redistribution is equal to
\[
r_f = \frac{\beta}{\beta + 1} \left(\frac{1}{\beta + 1} \right)^{\frac{1}{\beta}} \left(\frac{a + b}{2} \right),
\]
and is greater than the one obtained when states’ income taxes are allowed. Since the tax rate is lower in this case, there is a welfare improvement for all the federation’s individuals. In fact, this will be case for every \(I > I^* \), where \(I^* \) is defined by
\[
\left[\frac{(1-f)(1-s)}{\alpha} \right]^{\frac{1}{\beta}} \left[f \left(\frac{a + b}{2} \right) + s(1-f)a \right] = \frac{\beta}{\beta + 1} \left[\frac{1}{(\beta + 1)\alpha} \right]^{\frac{1}{\beta}} \left(\frac{a + b}{2} \right). \tag{4.2}
\]

Proof of Proposition 5. Under a federal matching grants program, the indirect utility level of poor individuals in state \(A \) is
\[
V^A_l = s_A(1-f)n_A^h w_A \left[\left(1 - s_A \right) \left(1 - f \right) w_A \right]^{\frac{1}{\beta}} \left[\frac{1 - (1-\delta)p_A}{\delta} \right] + f \left(\frac{1-f}{\alpha} \right)^{\frac{1}{\beta}} \sum_{i=A,B} p_i n_i^h w_i \left(1 - s_i \right) w_i^{\frac{1}{\beta}} \left(\frac{1-\delta}{\delta} r_B \right) \tag{4.5}
\]
\footnote{Since all the tax rates are a continuous function of \(I \), it implies that total redistribution is a continuous function of \(I \) as well. Furthermore, as proven in Lemma 2, total redistribution is strictly decreasing in inequality in this relevant range. Hence, such an \(I^* \) exists and is uniquely defined.}
obtained by substituting equations (2.3), (2.9), and (2.10) back into (2.2). The implemented state’s tax schedule in this state is obtained by maximizing (4.5) over the set of feasible state taxes. The solution to that maximization problem yields\(^4\)

\[
\hat{s}_A(\delta) = \begin{cases}
\frac{\beta}{\beta + 1} - \frac{\delta f_p A}{(1-f)(\beta + 1)(1-\delta)} & \text{if } f < \frac{\beta(1-\delta)p_A}{\beta(1-\delta)p_A + \delta p_A}, \\
0 & \text{otherwise.}
\end{cases}
\]

Substituting \(p_i = 1/2\) and solving for the preferred federal tax rate as in Propositions 1 and 2, we obtain

\[
f_A^l(\delta) = \begin{cases}
0 & \text{if } I \leq 1, \\
\frac{\beta(I-1)(1+\delta)^2}{2\delta + \beta(I-1)(1+\delta)} & \text{if } 1 < I \leq \frac{(1+\delta)(\beta+1)}{\beta(1+\delta)(1-\delta)}, \\
\frac{\beta(1+\delta)}{\beta(1+\delta) + \delta} & \text{if } \frac{(1+\delta)(\beta+1)}{\beta(1+\delta)(1-\delta)} < I,
\end{cases}
\]

for low productivity individuals, and

\[
f_A^h(\delta) = \begin{cases}
0 & \text{if } I \leq 1 + \frac{2\delta}{n_A^h(\beta+1)(1+\delta)}, \\
\frac{\beta(1+\delta)[(\beta+1)n_A^h(I-1)(1+\delta) - 2\delta]}{2\delta + n_A^h(\beta+1)(1+\delta)\beta + 1 n_A^h - 2\delta} & \text{if } 1 + \frac{2\delta}{n_A^h(\beta+1)(1+\delta)} < I \leq 1 + \frac{2(\delta + n_A^h)}{n_A^h[(1+\delta)(\beta+1) - 2]}, \\
\frac{\beta(1+\delta)}{\beta(1+\delta) + \delta} & \text{if } 1 + \frac{2(\delta + n_A^h)}{n_A^h[(1+\delta)(\beta+1) - 2]} < I.
\end{cases}
\]

for high productivity individuals.

As it is the case without federal matching funds, preferences are not monotonic in \(w\). Therefore, the equilibrium federal tax rate is \(f_A^h(\delta)\). Note that \(f_A^h(\delta) \geq f_A^h(1)\) for

\[I \leq \bar{x} \text{ or } I \geq 1 + \frac{2(\delta + n_A^h)}{n_A^h[(1+\delta)(\beta+1) - 2]},\]

which establishes the desired result. \(¥\)

Proof of Proposition 6. \(I < \frac{2-n_A^h}{n_A^h}\), implies that

\[n_A^h w_A^{1+\beta} + n_B^h w_B^{1+\beta} < 2 w_A^{1+\beta}\]

\(^4\)The indirect utility function \(V_A^l\) is strictly concave in \(s_A\) on the relevant domain. Hence, this is the unique solution, obtained directly from the first order conditions.
which directly yields \(y_A > \frac{1}{2} (n^h_A y_A + n^h_B y_B) \). Finally, by Proposition 2 we know that \(f^A_h \) is positive for \(1 + \frac{1}{(\sigma+1)n^A_A} < I \).

Proof of Proposition 7. Both claims follow from Bénabou (2000, pp. 122). The second claim follows directly by setting \(\lambda = 0 \) according to Bénabou’s notation. To establish the first claim, notice that \(\partial s / \partial f \) has the opposite sign of \(\partial s / \partial \Delta^2 \).
REFERENCES

