Introduction to Econometrics
Fall 2004
Assignment 6

Today’s Date: 11/2/2004
Due Date: 11/8/2004

Please show all of your work and clearly indicate your final response to each question.

1. (Review) A random variable Y is normally distributed with mean μ and variance σ_y^2 in a population. You have access to a random sample of size N from the population. Denote the sample draws by $\{y_1, \ldots, y_N\}$.

1. Define the least squares estimator of μ as

$$\hat{\mu} = \arg\min_{\mu} \sum_{i=1}^{N} (y_i - \mu)^2.$$

Show that this estimator of μ is unbiased. Derive the standard error associated with this estimator.

2. Define the maximum likelihood estimator of μ, which you can denote by $\hat{\mu}$. How are the $\hat{\mu}$ and $\hat{\mu}$ related?

3. Add regressors to this model. Instead of every population member have a common mean value of Y, let the mean for individual i be given by $X_i\beta$, where X_i is a $1 \times K$ vector of observed characteristics and β is a $K \times 1$ (unknown parameter vector). Compare the least squares and maximum likelihood estimators of β in this case.

2. A dependent variable y has a uniform distribution on the interval $[0, a]$, so that the density (p.d.f.) of y is given by

$$f(y) = \frac{1}{a} \mathbf{1}[y \in [0, a]].$$

You have access to a random sample of 5 draws from this distribution, and your goal is to estimate the unknown parameter a. The observations from the random sample are $\{2, 1, 5, 3, 8\}$.

1. Derive the maximum likelihood estimator of a, which we will denote by \hat{a}. What is the maximum likelihood estimate of a from this sample?
2. Consider an alternative estimator for \(a \), which is

\[
\tilde{a} = 2\bar{y}_N,
\]

where \(\bar{y}_N \) is the sample mean based on \(N \) observations. Find the value of \(\tilde{a} \) from this sample.

3. Determine whether \(\tilde{a} \) and \(\hat{a} \) are unbiased. Based on this criterion alone, which one would you favor?

4. Assuming that the variance of \(\hat{a} \) is a decreasing function of sample size (which it is), are both estimators consistent?

3. Let the difference in utility between choosing an action \(a \) and not choosing it to individual \(i \) be given by

\[
U^*_i = \beta x_i + \varepsilon_i,
\]

where the random variable \(\varepsilon_i \) is uniformly distributed on the interval \([-0.5, 0.5]\) for all individuals \(i \), \(x_i \) denotes an observable characteristic individual \(i \), and \(\beta \) is an unknown parameter. The individual chooses the action \(a \) if the net utility from doing so is positive, that is,

\[
d_i = \begin{cases}
1 & \text{if and only if } U^*_i > 0 \\
0 & \text{if and only if } U^*_i \leq 0
\end{cases}.
\]

1. Derive the probability that individual \(i \) with characteristics \(x_i \) will choose action \(a \).

2. Say that you have access to a random sample of observations on \(\{d_i, x_i\}_{i=1}^N \). Derive the maximum likelihood estimator of \(\beta \).