1. Aim

Central Aim: to design a probabilistic premise semantics for deontic should (and ought).

- Specifically, a semantic account that mixes probabilistic structure with the flexibility of classical, Krauter-style premise semantics.
- The resulting theory has more structure than classical premise semantics (by incorporating probabilities).
- ...but less structure than scalar theories (Lassiter 2011), by not incorporating numerical value functions or expectational structure.

Main message: the insight that the meaning of should/ought involves probability should not be identified with the claim that their meaning is tied to expectation.

2. Motivation

Why add probabilistic structure in a semantics for should?

Assumptions:
(A1) “likely φ” constrains a probabilistic information state.
(A2) if it’s likely that φ then shifts the information state.

Judgments (Yalcin 2012a):
(1) a. If it’s likely that you will fail the class, you should drop it.
(2) b. If the coin is biased towards tails, Iris should bet on tails.

Kolodny & MacFarlane (2010) argue that semantic values of deontic claims depend on background information states (motivated by examples like (2)-(3) below).

3. Related Issue: Information Sensitivity

- K操控 & MacFarlane (2010) argue that semantic values of deontic claims depend on background information states (motivated by examples like (2)-(3) below).
- I agree with this program and go a bit further: sensitivity to probabilistic states is injected in the semantics by the same mechanism that yields information sensitivity.
- The semantics in §4 is a probabilistic generalization of the information-sensitive, but non-probabilistic approach in Cariani, Kaufmann and Kaufmann (2013).

4. Core Proposal

4.1. Thesis 1.: Order alternatives (i.e. mutually incompatible sets of worlds), not worlds. (e.g. [refrain, bet-heads, bet-tails] or [drop, do not drop]).

4.2. Thesis 2. Premises are pairs (E, i) with E a goal/desirable state and i a threshold.

4.3. Thesis 3. In ordering alternatives, the only part of A that affects its ranking is the part that overlaps the salient information/background.

5. Account of (2)-(3)

- Assume context supplies appropriate premises [P1],[P2] and state (i, Pr).
- Proposition (4) John thinks Iris should not refrain from betting.

6. Account of (1a)-(1b)

- Need a treatment for conditional antecedents of the form "It is likely that φ'.
- Option 1: To evaluate: If it is likely that φ, ϕ' at (i, Pr) and O, evaluate ϕ at (i, Pr') and O where Pr' is α the probability function that makes [ϕ'] likely (for an approach roughly along these lines: Lassiter and Goodman, ms.).
- A dynamic system along the lines of Option 2 (based on Willer 2012, Yalcin 2012b and the semantics in §4) is on the ‘details’ handout or cariani.org/SALT.pdf.
- Given either option, premises that work to derive (1a)-(1b) are:

7. Why Not Scalar?

- The most important scalar theory draws on the notion of expected value.
- A. For a proposition, EV(α) = \sum_{w \in W} Pr(w) \cdot v(\alpha)
- [should φ]C,Pr,v,w = T iff the expected value of [φ] (calculated on the basis of Pr and v) > the expected value of the relevant alternatives.

8. Account of (4)-(5)

- If we implement the operator account in my system, there is no problem with attitudes or see the full paper on my website; for the response see Lassiter (2014).

References

Available online: cariani.org/SALT.pdf (or ask over #).