The anaphoric semantics of partial control

Dag Trygve Truslew Haug
University of Oslo

31 May 2014
Semantics and Linguistic Theory
New York University
The big picture

- Two mechanisms for handling dependencies between syntactic positions
 - identity – traditionally raising, unbounded dependencies, resumption
 - coindexation – traditionally control, binding
The big picture

- Two mechanisms for handling dependencies between syntactic positions
 - identity – traditionally raising, unbounded dependencies, resumption
 - coindexation – traditionally control, binding
- But uniform semantics using bound variables
Variable binding in the semantics

Sketch analyses

relativization: \(\lambda x. P(x) \land Q(x) \)
(P = head noun, Q = relative clause)

binding: \(\exists/\forall/\lambda x. \Phi(x, x) \)
(\(\Phi \) = some (complex) formula)

control: \(\lambda x. P(x, Q(x)) \)
(P = control verb, Q = infinitive)
Variable binding in the semantics

Sketch analyses

relativization \(\lambda x. P(x) \land Q(x) \) \((P = \text{head noun}, Q = \text{relative clause})\)

binding \(\exists/\forall/\lambda x. \Phi(x, x) \) \((\Phi = \text{some (complex) formula})\)

control \(\lambda x. P(x, Q(x)) \) \((P = \text{control verb}, Q = \text{infinitive})\)

- Partial coreference is a potential problem:
 - correlatives: Which language a person speaks better, from that nation he is. (Ossetic)
Variable binding in the semantics

Sketch analyses

- relativization: \(\lambda x. P(x) \land Q(x) \)
 (\(P \) = head noun, \(Q \) = relative clause)
- binding: \(\exists/\forall/\lambda x. \Phi(x, x) \)
 (\(\Phi \) = some (complex) formula)
- control: \(\lambda x. P(x, Q(x)) \)
 (\(P \) = control verb, \(Q \) = infinitive)

- Partial coreference is a potential problem:
 - correlatives: Which language a person speaks better, from that nation he is. (Ossetic)
 - binding: In every room the patient has someone visiting.
Variable binding in the semantics

Sketch analyses

- relativization: \[\lambda x. P(x) \land Q(x) \] (\(P \) = head noun, \(Q \) = relative clause)
- binding: \[\exists/\forall/\lambda x. \Phi(x, x) \] (\(\Phi \) = some (complex) formula)
- control: \[\lambda x. P(x, Q(x)) \] (\(P \) = control verb, \(Q \) = infinitive)

- Partial coreference is a potential problem:
 - correlatives: Which; language a person speaks better, from that; nation he is. (Ossetic)
 - binding: In every; room the; patient has someone visiting.
 - control: The; chair wants \(\Delta \); to gather at five.
Two strategies

Implicit material

Which language a person speaks better, from the nation (with that language) he is.
Two strategies

Implicit material

- Which language a person speaks better, from the nation (with that language) he is.
- In every room the patient (in the room) has someone visiting.
Two strategies

Implicit material

- Which language a person speaks better, from the nation (with that language) he is.
- In every room the patient (in the room) has someone visiting.
- The chair wants ∆ to gather (with the committee) at five.
Two strategies

Implicit material

- Which i language a person speaks better, from the nation (with that i language) he is.
- In every i room the patient (in the i room) has someone visiting.
- The i chair wants Δ_i to gather (with the commitee) at five.
 or
- The i chair wants Δ_i+_+ to gather at five.
Two strategies

Implicit material

- Which language a person speaks better, from the nation (with that language) he is.
- In every room the patient (in the room) has someone visiting.
- The chair wants \(\Delta \) to gather (with the committee) at five.
 or
- The chair wants \(\Delta^+ \) to gather at five.

Bridging

- Assimilate to bridging inferences *language* – *nation*, *room* – *patient*, *chair* – *committee*
Two strategies

Implicit material

- Which language a person speaks better, from the nation (with that language) he is.
- In every room the patient (in the room) has someone visiting.
- The chair wants to gather (with the committee) at five.
 or
- The chair wants to gather at five.

Bridging

- Assimilate to bridging inferences language – nation, room – patient, chair – committee
- → Distinguish identity and coindexation in the semantics too
Two strategies

Implicit material

- Which language a person speaks better, from the nation (with that language) he is.
- In every room the patient (in the room) has someone visiting.
- The chair wants to gather (with the committee) at five.
 - or
- The chair wants to gather at five.

Bridging

- Assimilate to bridging inferences language – nation, room – patient, chair – committee
- → Distinguish identity and coindexation in the semantics too
- I will argue against implicit material and for bridging in partial control
A caveat

- The traditional unitary analyses have been challenged
A caveat

- The traditional unitary analyses have been challenged
- In particular for control:
 - LFG has assumed a split syntactic analysis based on case behaviour since Bresnan (1982); Andrews (1982)

- Recent split analysis based on PC/EC distinction (Cinque, 2006; van Urk, 2010; Grano, 2012; Sheehan, to appear)
- Correlation of case and PC/EC (van Urk, 2010; Sheehan, to appear)

In line with this work, I assume that control is not unitary
- EC involves identity and therefore no case independence and no anaphoric semantics
- PC involves coindexation and therefore case independence and binding of a real (logophoric) pronoun
A caveat

- The traditional unitary analyses have been challenged
- In particular for control:
 - LFG has assumed a split syntactic analysis based on case behaviour since Bresnan (1982); Andrews (1982)
 - Recent split analysis based on PC/EC distinction (Cinque, 2006; van Urk, 2010; Grano, 2012; Sheehan, to appear)
A caveat

- The traditional unitary analyses have been challenged
- In particular for control:
 - LFG has assumed a split syntactic analysis based on case behaviour since Bresnan (1982); Andrews (1982)
 - Recent split analysis based on PC/EC distinction (Cinque, 2006; van Urk, 2010; Grano, 2012; Sheehan, to appear)
 - Correlation of case and PC/EC (van Urk, 2010; Sheehan, to appear)
The traditional unitary analyses have been challenged

In particular for control:
- LFG has assumed a split syntactic analysis based on case behaviour since Bresnan (1982); Andrews (1982)
- Recent split analysis based on PC/EC distinction (Cinque, 2006; van Urk, 2010; Grano, 2012; Sheehan, to appear)
- Correlation of case and PC/EC (van Urk, 2010; Sheehan, to appear)

In line with this work, I assume that control is not unitary
A caveat

- The traditional unitary analyses have been challenged
- In particular for control:
 - LFG has assumed a split syntactic analysis based on case behaviour since Bresnan (1982); Andrews (1982)
 - Recent split analysis based on PC/EC distinction (Cinque, 2006; van Urk, 2010; Grano, 2012; Sheehan, to appear)
 - Correlation of case and PC/EC (van Urk, 2010; Sheehan, to appear)
- In line with this work, I assume that control is not unitary
- EC involves identity and therefore no case independence and no anaphoric semantics
A caveat

- The traditional unitary analyses have been challenged
- In particular for control:
 - LFG has assumed a split syntactic analysis based on case behaviour since Bresnan (1982); Andrews (1982)
 - Recent split analysis based on PC/EC distinction (Cinque, 2006; van Urk, 2010; Grano, 2012; Sheehan, to appear)
 - Correlation of case and PC/EC (van Urk, 2010; Sheehan, to appear)
- In line with this work, I assume that control is not unitary
- EC involves identity and therefore no case independence and no anaphoric semantics
- PC involves coindexation and therefore case independence and binding of a real (logophoric) pronoun
The phenomenon

Some but not all control predicates allow the controlled position to refer to a plurality including the controller, as evidenced by e.g. compatibility with collective predicates.
The phenomenon

Some but not all control predicates allow the controlled position to refer to a plurality including the controller, as evidenced by e.g. compatibility with collective predicates.

(1)
 a. The chair wanted to gather at six.
 b. The chair preferred to gather at six.
 c. The chair agreed to gather at six.
The phenomenon

Some but not all control predicates allow the controlled position to refer to a plurality including the controller, as evidenced by e.g. compatibility with collective predicates.

(1) a. The chair wanted to gather at six.
b. The chair preferred to gather at six.
c. The chair agreed to gather at six.

(2) a. *The chair tried to gather at six.
b. *The chair began to gather at six.
c. *The chair managed to gather at six.
Correlation with tense

This correlates with the ability to shift the time:

(3)
 a. The chair wanted to hold the meeting tomorrow.
 b. The chair preferred to hold the meeting tomorrow.
 c. The chair agreed to hold the meeting tomorrow.
Correlation with tense

This correlates with the ability to shift the time:

(3) a. The chair wanted to hold the meeting tomorrow.
b. The chair preferred to hold the meeting tomorrow.
c. The chair agreed to hold the meeting tomorrow.

(4) a. *The chair tried to hold the meeting tomorrow.
b. *The chair began to hold the meeting tomorrow.
c. *The chair managed to hold the meeting tomorrow.
Semantic plural, syntactic singular

No plural anaphor

(5) a. *The chair wanted to meet each other.
b. *The chair preferred to meet each other.
c. *The chair agreed to meet each other.
Obligatory *de se*

Mistaken identity (Pearson, 2013, p. 307)

(6) John is an amnesiac. He is watching footage of an Olympic figure skating competition in which he competed, although he has forgotten this fact, and does not even recognise himself on the screen. He says ‘I think that team is going to win the medal, look how well they work together.’
Mistaken identity (Pearson, 2013, p. 307)

(6) John is an amnesiac. He is watching footage of an Olympic figure skating competition in which he competed, although he has forgotten this fact, and does not even recognise himself on the screen. He says ‘I think that team is going to win the medal, look how well they work together.’

a. #John expects to win the medal by working well together.
b. John\textsubscript{i} expects that they\textsubscript{i+} will win the medal by working well together.
White & Grano (2013)

Mean rating by verb and embedded predicate type

- Embedd predicate type
 - collective
 - noncollective

- Mean rating

- Dag Haug

Partial control

SALT, 31 May 2014
Semantics (Pearson, to appear)

- Only one developed analysis, foundational paper, though ultimately problematic analysis
Semantics (Pearson, to appear)

- Only one developed analysis, foundational paper, though ultimately problematic analysis
- Basic idea found already in Asudeh (2005):
 \[\lambda x. \lambda P. \exists y. want(x, P(y) \land x \subseteq y) \]
- The control verb ‘shifts’ the interpretation of the controllee to a superset containing the controller
Centered worlds semantics

- c is a *centered world*, a triple $\langle c_A, c_T, c_W \rangle$
Centered worlds semantics

- c is a *centered world*, a triple $\langle c_A, c_T, c_W \rangle$
- $\text{want}_{x,t,w}$ is a set of centered worlds c such that it is compatible with x’s desires at t in w for x to be c_A in c_W at c_T
Centered worlds semantics

- \(c \) is a centered world, a triple \(\langle c_A, c_T, c_W \rangle \)
- \(\text{want}_{x,t,w} \) is a set of centered worlds \(c \) such that it is compatible with \(x \)'s desires at \(t \) in \(w \) for \(x \) to be \(c_A \) in \(c_W \) at \(c_T \)
- \(x \) wants \(P \) is true iff for all of \(x \)'s want-worlds \(c \) there is an extension \(c' \) such that \(c'_A \) has the property \(P \) at \(c'_T \) in \(c'_W \)
Centered worlds semantics

- c is a centered world, a triple $\langle c_A, c_T, c_W \rangle$
- $\text{want}_{x, t, w}$ is a set of centered worlds c such that it is compatible with x’s desires at t in w for x to be c_A in c_W at c_T
- x wants P is true iff for all of x’s want-worlds c there is an extension c' such that c'_A has the property P at c'_T in c'_W
- c' extends c iff
 - $c_W = c'_W$
 - $c_A \subseteq c'_A$
 - $c_T \subseteq c'_T$ or $c_T < c'_T$ or $c_T > c'_T$
Centered worlds semantics

- c is a centered world, a triple $\langle c_A, c_T, c_W \rangle$.
- $\text{want}_{x,t,w}$ is a set of centered worlds c such that it is compatible with x’s desires at t in w for x to be c_A in c_W at c_T.
- x wants P is true iff for all of x’s want-worlds c there is an extension c' such that c'_A has the property P at c'_T in c'_W.
- c' extends c iff
 - $c_W = c'_W$
 - $c_A \subseteq c'_A$
 - $c_T \subseteq c'_T$ or $c_T < c'_T$ or $c_T > c'_T$
- So the shifting of the time and the individual coordinates is hardcoded in the lexical semantics of PC verbs.
Bundling the shifting of the time and individual coordinates seems attractive, but it is not clear that *extends* is a unified concept.
Problems

- Bundling the shifting of the time and individual coordinates seems attractive, but it is not clear that *extends* is a unified concept.
- Also, it is not clear that we want a unified shifting.
Bundling the shifting of the time and individual coordinates seems attractive, but it is not clear that \textit{extends} is a unified concept.

Also, it is not clear that we want a unified shifting.

Intuitively, the backward time shift of \textit{remember} and the forward time shift of \textit{expect} is part of the lexical semantics of these verbs in a way that the shifting of the subject isn’t.
Bundling the shifting of the time and individual coordinates seems attractive, but it is not clear that *extends* is a unified concept.

Also, it is not clear that we want a unified shifting:

- Intuitively, the backward time shift of *remember* and the forward time shift of *expect* is part of the lexical semantics of these verbs in a way that the shifting of the subject isn’t.
- The time shift is obligatory but the subject shift requires contextual support → existential quantification is too weak.
Bundling the shifting of the time and individual coordinates seems attractive, but it is not clear that *extends* is a unified concept.

Also, it is not clear that we want a unified shifting.

- Intuitively, the backward time shift of *remember* and the forward time shift of *expect* is part of the lexical semantics of these verbs in a way that the shifting of the subject isn’t.
- The time shift is obligatory but the subject shift requires contextual support → existential quantification is too weak.
- PC is “tolerated” rather than great (White & Grano, 2013).
Bundling the shifting of the time and individual coordinates seems attractive, but it is not clear that *extends* is a unified concept.

Also, it is not clear that we want a unified shifting.

 - Intuitively, the backward time shift of *remember* and the forward time shift of *expect* is part of the lexical semantics of these verbs in a way that the shifting of the subject isn’t.
 - The time shift is obligatory but the subject shift requires contextual support → existential quantification is too weak.
 - PC is “tolerated” rather than great (White & Grano, 2013).

Also, since the time and subject are both shifted in the semantics of the verb, we predict that the shifted times take the same, low scope.
(7) Everybody wanted to have lunch together.
Scope problems I: Quantification

(7) Everybody wanted to have lunch together.

\(\forall x. \forall c \in \text{want}_{x,n,w} \) there is an extension \(c' \) of \(c \) such that the center of \(c' \) has lunch together in \(c' \)

For all \(x \), \(x \) wants that there is a plurality \(y \supseteq x \) such that \(y \) has lunch together
Previous work

Scope problems I: Quantification

(7) Everybody wanted to have lunch together.

\[\forall x. \forall c \in \text{want}_{x,n,w} \text{ there is an extension } c' \text{ of } c \text{ such that the center of } c' \text{ has lunch together in } c' \]

For all \(x \), \(x \) wants that there is a plurality \(y \supseteq x \) such that \(y \) has lunch together

- It is hard to get this distributive reading of the subject shift (without contextual support)
(7) Everybody wanted to have lunch together.

\[\forall x. \forall c \in \text{want}_{x,n,w} \text{ there is an extension } c' \text{ of } c \text{ such that the center of } c' \text{ has lunch together in } c' \]

For all \(x \), \(x \) wants that there is a plurality \(y \supseteq x \) such that \(y \) has lunch together

- It is hard to get this distributive reading of the subject shift (without contextual support)
- Much easier to get a distribute reading of the time (… but they all had different time preferences)
(8) John is lonely. He wants to have lunch together.
(8) John is lonely. He wants to have lunch together.

$$\forall c \in \text{want}_{j,n,w} \text{ there is an extension } c' \text{ of } c \text{ such that the center of } c' \text{ has lunch together in } c'$$

John wants that there is some plurality $y \supseteq john$ such that y has lunch together
Scope problems II: Modality

(8) John is lonely. He wants to have lunch together.

\[\forall c \in \text{want}_{j,n,w} \text{ there is an extension } c' \text{ of } c \text{ such that the center of } c' \text{ has lunch together in } c' \]

John wants that there is some plurality \(y \supseteq john \) such that \(y \) has lunch together

- This non-specific reading is not available
(8) John is lonely. He wants to have lunch together.

\[\forall c \in \text{want}_{j,n,w} \text{ there is an extension } c' \text{ of } c \text{ such that the center of } c' \text{ has lunch together in } c' \]

John wants that there is some plurality \(y \supseteq john \) such that \(y \) has lunch together

- This non-specific reading is not available
- Instead PRO refers to controller + discourse participants
(9) John is looking for a group of elves. He wants to have lunch together.

\[\forall c \in \text{want}_{j,n,w} \text{ there is an extension } c' \text{ of } c \text{ such that the center of } c' \text{ has lunch together in } c' \]

John wants that there is some plurality \(y \supseteq john \) such that \(y \) has lunch together
(9) John is looking for a group of elves. He wants to have lunch together.

\[\forall c \in \text{want}_{j,n,w} \text{ there is an extension } c' \text{ of } c \text{ such that the center of } c' \text{ has lunch together in } c' \]

John wants that there is some plurality \(y \supseteq john \) such that \(y \) has lunch together

- We get an intensional reading of PRO (but not the predicted one)
(9) John is looking for a group of elves. He wants to have lunch together.

$\forall c \in \text{want}_{j,n,w}$ there is an extension c' of c such that the center of c' has lunch together in c'

John wants that there is some plurality $y \supseteq john$ such that y has lunch together

- We get an intensional reading of PRO (but not the predicted one)
- All of these scope facts motivate an anaphoric approach, which predicts the context sensitivity of PC
The core idea

- Coindexation means the grammar imposing an antecedent
The core idea

- Coindexation means the grammar imposing an antecedent
- Pronouns are generally fully covariant with their antecedents, but there is some limited leeway
The core idea

- Coindexation means the grammar imposing an antecedent
- Pronouns are generally fully covariant with their antecedents, but there is some limited leeway
- So PC is essentially a repair strategy in cases where a singular interpretation does not make sense
The core idea

- Coindexation means the grammar imposing an antecedent
- Pronouns are generally fully covariant with their antecedents, but there is some limited leeway
- So PC is essentially a repair strategy in cases where a singular interpretation does not make sense
- This strategy is not available for EC verbs, which involve syntactic identity rather than coindexation and therefore no bound pronoun
Coindexation means the grammar imposing an antecedent
Pronouns are generally fully covariant with their antecedents, but there is some limited leeway
So PC is essentially a repair strategy in cases where a singular interpretation does not make sense
This strategy is not available for EC verbs, which involve syntactic identity rather than coindexation and therefore no bound pronoun
On the other hand, we would expect PC to show variability according to context (including choice of matrix verb)
Pronouns in bridging (Nouwen, 2003; Geurts, 2011)

As far as DRT is concerned, pronouns are just semantically attenuated definite descriptions.

(10) We cannot use John's car. #All four of them are flat. (Nouwen, 2003, ex. 3.81)

But does not make it impossible:

(11) My next-door neighbours make a lot of noise. He plays the drums and she keeps on shouting at him.

(12) John kept on staring at the newly-wed couple. She resembled a childhood sweetheart of his.

(13) The priest was tortured for days. They wanted him to reveal where the insurgents were hiding out.

(14) When Little Johnny threw up, was there any pencil-eraser in it?
As far as DRT is concerned, pronouns are just semantically attentuated definite descriptions. This constrains bridging:

(10) We cannot use John’s car. All four of them are flat. (Nouwen, 2003, ex. 3.81)
As far as DRT is concerned, pronouns are just semantically attentuated definite descriptions. This constrains bridging:

(10) We cannot use John’s car. #All four of them are flat. (Nouwen, 2003, ex. 3.81)

But does not make it impossible:

(11) My next-door neighbours make a lot of noise. He plays the drums and she keeps on shouting at him.
An anaphoric approach

Pronouns in bridging (Nouwen, 2003; Geurts, 2011)

As far as DRT is concerned, pronouns are just semantically attenuated definite descriptions. This constrains bridging:

(10) We cannot use John’s car. #All four of them are flat. (Nouwen, 2003, ex. 3.81)

But does not make it impossible:

(11) My next-door neighbours make a lot of noise. He plays the drums and she keeps on shouting at him.

(12) John kept on staring at the newly-wed couple. She resembled a childhood sweetheart of his.
Pronouns in bridging (Nouwen, 2003; Geurts, 2011)

As far as DRT is concerned, pronouns are just semantically attenuated definite descriptions. This constrains bridging:

(10) We cannot use John’s car. #All four of them are flat. (Nouwen, 2003, ex. 3.81)

But does not make it impossible:

(11) My next-door neighbours make a lot of noise. He plays the drums and she keeps on shouting at him.

(12) John kept on staring at the newly-wed couple. She resembled a childhood sweetheart of his.

(13) The priest was tortured for days. They wanted him to reveal where the insurgents were hiding out.
As far as DRT is concerned, pronouns are just semantically attentuated definite descriptions. This constrains bridging:

(10) We cannot use John’s car. #All four of them are flat. (Nouwen, 2003, ex. 3.81)

But does not make it impossible:

(11) My next-door neighbours make a lot of noise. He plays the drums and she keeps on shouting at him.

(12) John kept on staring at the newly-wed couple. She resembled a childhood sweetheart of his.

(13) The priest was tortured for days. They wanted him to reveal where the insurgents were hiding out.

(14) When Little Johnny threw up, was there any pencil-eraser in it?
Bridging PRO

The view here is that PRO is a bound and logophoric pronoun.
Bridging PRO

- The view here is that PRO is a bound and logophoric pronoun.
- As a bound pronoun it can exhibit syntax-semantics mismatches between its syntactic agreement features on one hand and its reference on the other (if the context requires).

(15) We all sometimes think we are the only person in the world. (Schlenker, 2003)

The lack of descriptive content in PRO should make bridging more difficult; but the grammatically specified antecedent should make it easier.
Bridging PRO

- The view here is that PRO is a bound and logophoric pronoun.
- As a bound pronoun it can exhibit syntax-semantics mismatches between its syntactic agreement features on one hand and its reference on the other (if the context requires).

(15) We all sometimes think we are the only person in the world. (Schlenker, 2003)
Bridging PRO

- The view here is that PRO is a bound and logophoric pronoun.
- As a bound pronoun it can exhibit syntax-semantics mismatches between its syntactic agreement features on one hand and its reference on the other (if the context requires).

(15) We all sometimes think we are the only person in the world. (Schlenker, 2003)

- The lack of descriptive content in PRO should make bridging more difficult; but the grammatically specified antecedent should make it easier.
The antecedent of PRO

- It is common to assume that PRO denotes the attitude center (Schlenker, 2003; Maier, 2009; Stephenson, 2010)
The antecedent of PRO

- It is common to assume that PRO denotes the attitude center (Schlenker, 2003; Maier, 2009; Stephenson, 2010)
- But partial control tells us that this cannot be the case: in the figure skating scenario, *John* is the attitude center and PRO refers to the team
It is common to assume that PRO denotes the attitude center (Schlenker, 2003; Maier, 2009; Stephenson, 2010).

But partial control tells us this cannot be the case: in the figure skating scenario, John is the attitude center and PRO refers to the team.

One way out is to assume a “plural PRO” referring to a plurality containing the attitude center (Stephenson, 2010).
The antecedent of PRO

- It is common to assume that PRO denotes the attitude center (Schlenker, 2003; Maier, 2009; Stephenson, 2010).
- But partial control tells us that this cannot be the case: in the figure skating scenario, John is the attitude center and PRO refers to the team.
- One way out is to assume a “plural PRO” referring to a plurality containing the attitude center (Stephenson, 2010).
- This overgenerates and leaves unexplained why PRO isn’t syntactically plural.
The antecedent of PRO

- It is common to assume that PRO denotes the attitude center (Schlenker, 2003; Maier, 2009; Stephenson, 2010)
- But partial control tells us this cannot be the case: in the figure skating scenario, John is the attitude center and PRO refers to the team
- One way out is to assume a “plural PRO” referring to a plurality containing the attitude center (Stephenson, 2010)
- This overgenerates and leaves unexplained why PRO isn’t syntactically plural
- So we assume that PRO is bound to the matrix controller (Maier, 2011) and reflects the agreement features of its antecedent, although its reference can be affected by bridging
The reference of PRO

- Feature mismatch when necessary because bound pronoun (as in Pearson, to appear)

Uniqueness criterion for pronominal bridging (Nouwen, 2003) predicts the absence of "superset control" (Landau, 2000, p. 7):

*The i chair was glad the j commitee had agreed to PRO i ⊂ j wear a tie.

Salient plurality can be constructed by adding speaker/hearer Other predictions unclear at this stage (and so is the data), but the bridging theory is generally consistent with the variable judgement of the data in White & Grano (2013)

Parallel with complement anaphora (Nouwen, 2003, p. 79) This account, where complement anaphora are considered to be an extra-ordinary case of anaphora, might (at least partly) explain where this discomfort with pronominal reference to the complement set comes from
The reference of PRO

- Feature mismatch when necessary because bound pronoun (as in Pearson, to appear)
- Uniqueness criterion for pronominal bridging (Nouwen, 2003) predicts the absence of “superset control” (Landau, 2000, 7):
 - *The_i chair was glad the_j commitee had agreed to PRO_{i\subset j} wear a tie.

- Salient plurality can be constructed by adding speaker/hearer
- Other predictions unclear at this stage (and so is the data), but the bridging theory is generally consistent with the variable judgement of the data in White & Grano (2013)
- Parallel with complement anaphora (Nouwen, 2003, p. 79)
- This account, where complement anaphora are considered to be an extraordinary case of anaphora, might (at least partly) explain where this discomfort with pronominal reference to the complement set comes from.
The reference of PRO

- Feature mismatch when necessary because bound pronoun (as in Pearson, to appear)
- Uniqueness criterion for pronominal bridging (Nouwen, 2003) predicts the absence of “superset control” (Landau, 2000, 7):
 - *The_i chair was glad the_j commitee had agreed to PRO_{i \subset j} wear a tie.
- Salient plurality can be constructed by adding speaker/hearer
The reference of PRO

- Feature mismatch when necessary because bound pronoun (as in Pearson, to appear)
- Uniqueness criterion for pronominal bridging (Nouwen, 2003) predicts the absence of “superset control” (Landau, 2000, 7):
 - *The\textsubscript{i} chair was glad the\textsubscript{j} commitee had agreed to PRO\textsubscript{i} \textsubscript{⊂} \textsubscript{j} wear a tie.
- Salient plurality can be constructed by adding speaker/hearer
- Other predictions unclear at this stage (and so is the data), but the bridging theory is generally consistent with the variable judgement of the data in White & Grano (2013)
The reference of PRO

- Feature mismatch when necessary because bound pronoun (as in Pearson, to appear)
- Uniqueness criterion for pronominal bridging (Nouwen, 2003) predicts the absence of “superset control” (Landau, 2000, 7):
 - *The_i chair was glad the_j commitee had agreed to PRO_i \sub j wear a tie.
- Salient plurality can be constructed by adding speaker/hearer
- Other predictions unclear at this stage (and so is the data), but the bridging theory is generally consistent with the variable judgement of the data in White & Grano (2013)

Parallel with complement anaphora (Nouwen, 2003, p. 79)

This account, where complement anaphora are considered to be an extraordinary case of anaphora, might (at least partly) explain where this discomfort with pronominal reference to the complement set comes from
Partial CDRT (Haug, 2013)

Based on CDRT (Muskens, 1996), which equips DRT with lambdas.
Partial CDRT (Haug, 2013)

- Based on CDRT (Muskens, 1996), which equips DRT with lambdas.
- Move to a partial logic to deal with anaphora without coindexation.
Partial CDRT (Haug, 2013)

- Based on CDRT (Muskens, 1996), which equips DRT with lambdas
- Move to a partial logic to deal with anaphora without coindexation
- Drefs are object language entities (type π), not just type e variables
Partial CDRT (Haug, 2013)

- Based on CDRT (Muskens, 1996), which equips DRT with lambdas
- Move to a partial logic to deal with anaphora without coindexation
- Drefs are object language entities (type π), not just type e variables
- So we can talk about drefs and their reference in our logic
Partial CDRT (Haug, 2013)

- Based on CDRT (Muskens, 1996), which equips DRT with lambdas
- Move to a partial logic to deal with anaphora without coindexation
- Drefs are object language entities (type π), not just type e variables
- So we can talk about drefs and their reference in our logic
- Generally we only want to say “x_1 must have an accessible antecedent” and leave the actual resolution to the pragmatics
Sample discourse

John$_1$ hid Bill’s$_2$ key$_3$.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$john(x_1)$</td>
<td>$bill(x_2)$</td>
<td>$key(x_3)$</td>
</tr>
<tr>
<td>$poss(x_2, x_3)$</td>
<td>$hide(x_1, x_3)$</td>
<td></td>
</tr>
</tbody>
</table>

$A = \{ \}$
Sample discourse

John\(_1\) hid Bill’s\(_2\) key\(_3\). He\(_4\) was drunk.

\[
\begin{array}{cccc}
 x_1 & x_2 & x_3 & \bar{x}_4 \\
 john(x_1) & bill(x_2) & key(x_3) & poss(x_2, x_3) & hide(x_1, x_3) & drunk(x_4)
\end{array}
\]

\[\mathcal{A} = \{ x_4 \mapsto x_1 \} \]
Sample discourse

John$_1$ hid Bill’s$_2$ key$_3$. He$_4$ was drunk. So he$_5$ shouldn’t drive.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>\bar{x}_4</th>
<th>\bar{x}_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{john}(x$_1$)</td>
<td>\textit{bill}(x$_2$)</td>
<td>\textit{key}(x$_3$)</td>
<td>\textit{poss}(x$_2$, x$_3$)</td>
<td>\textit{hide}(x$_1$, x$_3$)</td>
</tr>
</tbody>
</table>

$\mathcal{A} = \{ x_4 \mapsto x_1, x_4 \mapsto x_2, x_5 \mapsto x_4 \}$
John_1 hid Bill’s_2 key_3. He_4 was drunk. So he_5 shouldn’t drive.

<table>
<thead>
<tr>
<th>x₁</th>
<th>x₂</th>
<th>x₃</th>
<th>̄x₄</th>
<th>̄x₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>john(x₁)</td>
<td>bill(x₂)</td>
<td>key(x₃)</td>
<td>poss(x₂, x₃)</td>
<td>hide(x₁, x₃)</td>
</tr>
<tr>
<td>drunk(x₄)</td>
<td>shouldn’t drive(x₅)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ant(x₄)</td>
<td>ant(x₅)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[A = \{ x₄ \mapsto x₂, x₅ \mapsto x₄ \} \]
Anaphoric reference in PCDRT

- Separation of monotonic and non-monotonic content → clean account of anaphora
Anaphoric reference in PCDRT

- Separation of monotonic and non-monotonic content → clean account of anaphora
- Monotonic part in semantics: \(\text{ant}(x) := \partial(\mathcal{A}(x) = x \land \mathcal{A}(x) \prec x) \)
Anaphoric reference in PCDRT

- Separation of monotonic and non-monotonic content → clean account of anaphora
- Monotonic part in semantics: \(\text{ant}(x) := \partial(\mathcal{A}(x) = x \land \mathcal{A}(x) \prec x) \)
- Non-monotonic part \(\mathcal{A} \) comes from pragmatic inferences
Anaphoric reference in PCDRT

- Separation of monotonic and non-monotonic content \rightarrow clean account of anaphora
- Monotonic part in semantics: $\text{ant}(x) := \partial(\mathcal{A}(x) = x \land \mathcal{A}(x) \prec x)$
- Non-monotonic part \mathcal{A} comes from pragmatic inferences
- Haug (2013) put ant directly in the DRS, but this leads to beliefs about anaphoric accessibility
Anaphoric reference in PCDRT

- Separation of monotonic and non-monotonic content → clean account of anaphora
- Monotonic part in semantics: \(\text{ant}(x) := \partial(\mathcal{A}(x) = x \land \mathcal{A}(x) \prec x) \)
- Non-monotonic part \(\mathcal{A} \) comes from pragmatic inferences
- Haug (2013) put \(\text{ant} \) directly in the DRS, but this leads to beliefs about anaphoric accessibility
- Haug (2013) assumed \(\mathcal{A} \) always encoded identity, but we need an account of bridging
Extending PCDRT with bridging

John entered the room.

\[
\begin{array}{c|c}
 x_1 & \bar{x}_2 \\
 \hline
 john(x_1) & \\
 \partial(room(x_2)) & \\
 enter(x_1, x_2) & \\
\end{array}
\]
Extending PCDRT with bridging

John entered the room. The chandelier sparkled brightly.

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(\bar{x}_2)</th>
<th>(\bar{x}_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{john}(x_1))</td>
<td>(\partial(\text{room}(x_2)))</td>
<td>(\text{enter}(x_1, x_2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{spark.brightly}(x_3))</td>
</tr>
<tr>
<td></td>
<td>(\partial(\text{chandelier}(x_3)))</td>
<td>(\text{ant}(x_3))</td>
</tr>
</tbody>
</table>
Extending PCDRT with bridging

John entered the room. The chandelier sparkled brightly.

\[
\begin{array}{cccc}
 x_1 & \bar{x}_2 & \bar{x}_3 \\
 john(x_1) & \partial(room(x_2)) & enter(x_1, x_2) & spark.brightly(x_3) \\
 \partial(chandelier(x_3)) & ant(x_3) \\
\end{array}
\]

\[\mathcal{A}(x_3) = x_2\]
\[\mathcal{B}(x_3) = \lambda x.\lambda y. in(x, y)\]
Extending PCDRT with bridging

John entered the room. The chandelier sparkled brightly.

\[
\begin{array}{c|cccc}
 x_1 & \bar{x}_2 & \bar{x}_3 \\
 \hline
 john(x_1) & \partial(room(x_2)) & enter(x_1, x_2) & spark.brightly(x_3) & \partial(chandelier(x_3)) \end{array}
\]

\[A(x_3) = x_2\]
\[B(x_3) = \lambda x. \lambda y. in(x, y)\]

\[K\] is true in state \(i\) iff there is an output state \(o\) such that

\[\llbracket K(i)(o) \rrbracket\] is true
John entered the room. The chandelier sparkled brightly.

\[x_1 \bar{x}_2 \bar{x}_3 \]

\[\text{john}(x_1) \]
\[\partial(\text{room}(x_2)) \]
\[\text{enter}(x_1, x_2) \]
\[\text{spark}.\text{brightly}(x_3) \]
\[\partial(\text{chandelier}(x_3)) \]

\[A(x_3) = x_2 \]
\[B(x_3) = \lambda x . \lambda y . \text{in}(x, y) \]

\(K \) is true in state \(i \) iff there is an output state \(o \) such that

- \(\llbracket K(i)(o) \rrbracket \) is true
- \(\text{ant}(\bar{x}) \) holds of all anaphoric drefs \(\bar{x} \)
Extending PCDRT with bridging

John entered the room. The chandelier sparkled brightly.

<table>
<thead>
<tr>
<th>x_1</th>
<th>\bar{x}_2</th>
<th>\bar{x}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$john(x_1)$</td>
<td>$\partial(room(x_2))$</td>
<td>$enter(x_1, x_2)$</td>
</tr>
<tr>
<td>$spark.brightly(x_3)$</td>
<td>$\partial(chandelier(x_3))$</td>
<td></td>
</tr>
</tbody>
</table>

$A(x_3) = x_2$

$B(x_3) = \lambda x. \lambda y. in(x, y)$

K is true in state i iff there is an output state o such that

- $\lfloor K(i)(o) \rfloor$ is true
- $ant(\bar{x})$ holds of all anaphoric drefs \bar{x}
- $ant(\bar{x}) := \partial(B(\bar{x})(\bar{x}, A(\bar{x}))) \land (A(\bar{x}) \prec \bar{x})$ (i.e. the bridging relation holds)
Extending PCDRT with centered worlds

- Following Maier (2009) I assume DRSs denote sets of centered worlds \(\langle a, w \rangle \) (so there is always a singleton predicate \textit{center} \)
Extending PCDRT with centered worlds

- Following Maier (2009) I assume DRSs denote sets of centered worlds \(\langle a, w \rangle \) (so there is always a singleton predicate \textit{center})
- \textit{want}_x denotes the set of centered worlds \(\langle a, w \rangle \) such that it is compatible with \(x \) desires for \(x \) to be \(a \) in \(w \)
Extending PCDRT with centered worlds

- Following Maier (2009) I assume DRSs denote sets of centered worlds \(\langle a, w \rangle \) (so there is always a singleton predicate \textit{center})
- \textit{want}_x\) denotes the set of centered worlds \(\langle a, w \rangle \) such that it is compatible with \(x \) desires for \(x \) to be \(a \) in \(w \)
- If \(x \) is a dref and \(K \) a DRS, \textit{want}(x, K) is a DRS condition
Extending PCDRT with centered worlds

- Following Maier (2009) I assume DRSs denote sets of centered worlds \(\langle a, w \rangle \) (so there is always a singleton predicate \textit{center})
- \textit{want}_x denotes the set of centered worlds \(\langle a, w \rangle \) such that it is compatible with \(x \) desires for \(x \) to be \(a \) in \(w \)
- If \(x \) is a dref and \(K \) a DRS, \(\text{want}(x, K) \) is a DRS condition
- \(\llbracket \text{want}(x, K) \rrbracket \) is true iff \(\text{want}_x \subseteq \llbracket K \rrbracket \)
Compositional semantics

PRO: \[\lambda P. \left[\begin{array}{c} \bar{x}_2 \\ B(x_2)(x_2, A(x_2)) \\ center(A(x_2)) \end{array} \right]; P \]

- Logophor → dual semantics reflecting \textit{aboutness} and \textit{awareness}
Compositional semantics

PRO: $\lambda P. \bar{x}_2 B(x_2)(x_2, A(x_2)) \; ; \; P$

- Logophor \rightarrow dual semantics reflecting aboutness and awareness
Compositional semantics

PRO: $\lambda P. \begin{array}{c} \bar{x}_2 \\ \beta(x_2)(x_2, A(x_2)) \\ \text{center}(A(x_2)) \end{array} ; P$

- Logophor \rightarrow dual semantics reflecting *aboutness* and *awareness*

wants: $\lambda P. \lambda x. \begin{array}{c} \text{wants}(x, P ; \text{center}(x)) \end{array}$

- The semantics of attitude verbs specify an attitude center
Compositional semantics

\[
\begin{array}{c|c}
\bar{x}_2 \\
\hline
\lambda P. & B(x_2)(x_2, A(x_2)) ; P \\
& \text{center}(A(x_2))
\end{array}
\]

- **PRO:** \(\lambda P. \lambda x. \text{wants}(x, P ; \text{center}(x))\)

- Logophor \(\rightarrow\) dual semantics reflecting *aboutness* and *awareness*

- **wants:** \(\lambda P. \lambda x. \text{wants}(x, P ; \text{center}(x))\)

- The semantics of attitude verbs specify an attitude center
Compositional semantics

PRO: \[\lambda P. B(x_2)(x_2, A(x_2)) ; P \]

- Logophor \(\rightarrow \) dual semantics reflecting \textit{aboutness} and \textit{awareness}

wants: \[\lambda P. \lambda x. \text{wants}(x, P ; \text{center}(x)) \]

- The semantics of attitude verbs specify an attitude center

the chair: \[\lambda P. \bar{x}_1 ; P(x_1) \]

to gather at six: \[\lambda x. \text{gather.at.six}(x) \]
A worked example

PRO to gather at six

<table>
<thead>
<tr>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(x_2)(x_2, A(x_2))$</td>
</tr>
<tr>
<td>$\text{center}(A(x_2))$</td>
</tr>
<tr>
<td>$\text{gather.at.six}(x_2)$</td>
</tr>
</tbody>
</table>
A worked example

\[\lambda P. \lambda x. \text{want}(x, \frac{\text{center}(x)}{P}) \]

wants(\text{PRO to gather at six})

\[\frac{x_2}{B(x_2)(x_2, A(x_2))} \]
\[\frac{\text{center}(A(x_2))}{\text{gather.at.six}(x_2)} \]
A worked example

\[
\lambda x. \left(\text{want}(x, B(x_2)(x_2, A(x_2))) \right) \]

wants PRO to gather at six
A worked example

the chair wants PRO to gather at six

\[
\begin{array}{|c|}
\hline
\chi_1 \\
\hline
\text{chair}(\chi_1) \\
\hline
\chi_2 \\
\hline
\text{center}(\chi_1) \\
\mathcal{B}(\chi_2)(\chi_2, \mathcal{A}(\chi_2)) \\
\text{center}(\mathcal{A}(\chi_2)) \\
\text{gather.at.six}(\chi_2) \\
\hline
\end{array}
\]
A worked example

the chair wants PRO to gather at six

<table>
<thead>
<tr>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$chair(x_1)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$center(x_1)$</td>
</tr>
<tr>
<td>$B(x_2)(x_2, A(x_2))$</td>
</tr>
<tr>
<td>$center(A(x_2))$</td>
</tr>
<tr>
<td>$gather.at.six(x_2)$</td>
</tr>
</tbody>
</table>

$B(x_2) = \lambda x.\lambda y.y \text{ chairs } x$
A worked example

\[
\begin{array}{|c|}
\hline
x_1 \\
\hline
\text{chair}(x_1) \\
\hline
x_2 \\
\hline
\text{want}(x_1, \\
\text{chairs}(A(x_2), x_2)) \\
\text{center}(A(x_2)) \\
\text{gather.at.six}(x_2) \\
\hline
\end{array}
\]
A worked example

\[
\begin{array}{|c|c|}
\hline
x_1 & \text{\textit{chair}}(x_1) \\
\hline
\text{\textit{want}}(x_1, x_2) & \begin{array}{c}
\text{\textit{center}}(x_1) \\
\text{\textit{chairs}}(x_1, x_2) \\
\text{\textit{center}}(x_1) \\
\text{\textit{gather.at.six}}(x_2)
\end{array} \\
\hline
\end{array}
\]

by uniqueness of \textit{center}
Conclusions

- The anaphoric approach correctly predicts context dependency of PRO and is compatible with variable judgments.
Conclusions

- The anaphoric approach correctly predicts context dependency of PRO and is compatible with variable judgments.
- It correctly predicts no partial raising because no pronoun involved.
Conclusions

- The anaphoric approach correctly predicts context dependency of PRO and is compatible with variable judgments.
- It correctly predicts no partial raising because no pronoun involved.
- The syntax/semantics \textit{NUMBER} mismatch follows from PRO’s status as a bound pronoun.
Conclusions

- The anaphoric approach correctly predicts context dependency of PRO and is compatible with variable judgments.
- It correctly predicts no partial raising because no pronoun involved.
- The syntax/semantics `NUMBER` mismatch follows from PRO’s status as a bound pronoun.
- No superset reading follows from bridging principles (uniqueness).
Conclusions

- The anaphoric approach correctly predicts context dependency of PRO and is compatible with variable judgments.
- It correctly predicts no partial raising because no pronoun involved.
- The syntax/semantics NUMBER mismatch follows from PRO’s status as a bound pronoun.
- No superset reading follows from bridging principles (uniqueness).
- Well modelled in PCDRT because of split between monotonic content (binding) and non-monotonic content (bridging).
Conclusions

- The anaphoric approach correctly predicts context dependency of PRO and is compatible with variable judgments.
- It correctly predicts no partial raising because no pronoun involved.
- The syntax/semantics number mismatch follows from PRO’s status as a bound pronoun.
- No superset reading follows from bridging principles (uniqueness).
- Well modelled in PCDRT because of split between monotonic content (binding) and non-monotonic content (bridging).
- PC/EC predicate split follows from a syntactic difference, which now has a well-defined semantic correlate.
The missing part: distribution of PC/EC

- Landau’s PC classes (factives, propositionals, desideratives, interrogatives) suggest that PC ↔ attitude verb
The missing part: distribution of PC/EC

- Landau’s PC classes (factivs, propositionals, desideratives, interrogatives) suggest that PC ↔ attitude verb
- Pearson argues tense shift also necessary based on claim and pretend
The missing part: distribution of PC/EC

- Landau’s PC classes (factuals, propositionals, desideratives, interrogatives) suggest that PC ↔ attitude verb
- Pearson argues tense shift also necessary based on *claim* and *pretend*
- Backfires, as *pretend* actually scores well in White & Grano (2013)
The missing part: distribution of PC/EC

- Landau’s PC classes (factuals, propositionals, desideratives, interrogatives) suggest that $PC \leftrightarrow$ attitude verb
- Pearson argues tense shift also necessary based on *claim* and *pretend*
- Backfires, as *pretend* actually scores well in White & Grano (2013)
- Moreover, PC is possible with these verbs + progressives
The missing part: distribution of PC/EC

- Landau’s PC classes (factivs, propositionals, desideratives, interrogatives) suggest that PC \leftrightarrow attitude verb
- Pearson argues tense shift also necessary based on *claim* and *pretend*
- Backfires, as *pretend* actually scores well in White & Grano (2013)
- Moreover, PC is possible with these verbs + progressives
- At current state of our knowledge, not impossible that all and only attitudinal (subject and object) control verbs allow PC
The missing part: distribution of PC/EC

- Landau’s PC classes (factives, propositionals, desideratives, interrogatives) suggest that PC ↔ attitude verb
- Pearson argues tense shift also necessary based on *claim* and *pretend*
- Backfires, as *pretend* actually scores well in White & Grano (2013)
- Moreover, PC is possible with these verbs + progressives
- At current state of our knowledge, not impossible that all and only attitudinal (subject and object) control verbs allow PC
- Sits well with a theory of PRO as a contentful logophor and the control complement as a proposition (set of centered worlds)
Landau’s PC classes (factivs, propositionals, desideratives, interrogatives) suggest that PC ↔ attitude verb
Pearson argues tense shift also necessary based on claim and pretend
Backfires, as pretend actually scores well in White & Grano (2013)
Moreover, PC is possible with these verbs + progressives
At current state of our knowledge, not impossible that all and only attitudinal (subject and object) control verbs allow PC
Sits well with a theory of PRO as a contentful logophor and the control complement as a proposition (set of centered worlds)
EC verbs could take “smaller” complements, e.g. properties
References I

References III

