Can Technology Replace Social Engineering?

Alvin M. Weinberg

During World War II, and immediately afterward, our federal government mobilized its scientific and technical resources, such as the Oak Ridge National Laboratory [ORNL], around great technological problems. Nuclear reactors, nuclear weapons, radar, and space are some of the miraculous new technologies that have been created by this mobilization of federal effort. In the past few years there has been a major change in focus of much of our federal research. Instead of being preoccupied with technology, our government is now mobilizing around problems that are largely social. We are beginning to ask what we can do about world population, about the deterioration of our environment, about our educational system, our decaying cities, race relations, poverty. Recent administrations have dedicated the power of a scientifically oriented federal apparatus to finding solutions for these complex social problems.

Social problems are much more complex than are technological problems. It is much harder to identify a social problem than a technological problem: how do we know when our cities need renewing, or when our population is too big, or when our modes of transportation have broken down? The problems are, in a way, harder to identify just because their solutions are never clear-cut: how do we know when our cities are renewed, or our air clean enough, or our transportation convenient enough? By contrast, the availability of a crisp and beautiful technological solution often helps focus on the problem to which the new technology is the solution. I doubt that we would have

Copyright 1966. The University of Chicago Magazine. Reprinted with permission.
been nearly as concerned with an eventual shortage of energy as we now are if we had not had a neat solution—nuclear energy—available to eliminate the shortage.

There is a more basic sense in which social problems are much more difficult than are technological problems. A social problem exists because many people behave, individually, in a socially unacceptable way. To solve a social problem one must induce social change—one must persuade many people to behave differently than they have behaved in the past. One must persuade many people to have fewer babies, or to drive more carefully, or to refrain from disliking blacks. By contrast, resolution of a technological problem involves many fewer individual decisions. Once President Roosevelt decided to go after atomic energy, it was by comparison a relatively simple task to mobilize the Manhattan Project.

The resolution of social problems by the traditional methods—by motivating or forcing people to behave more rationally—is a frustrating business. People don’t behave rationally; it is a long, hard business to persuade individuals to forgo immediate personal gain or pleasure (as seen by the individual) in favor of longer term social gain. And indeed, the aim of social engineering is to invent the technical devices—usually legal, but also moral and educational and organizational—that will change each person’s motivation and redirect his activities along ways that are more acceptable to the society.

The technologist is appalled by the difficulties faced by the social engineer; to engineer even a small social change by inducing individuals to behave differently is always hard even when the change is rather neutral or even beneficial. For example, some rice eaters in India are reported to prefer starvation to eating wheat which we send to them. How much harder it is to change motivations where the individual is insecure and feels threatened if he acts differently, as illustrated by the poor white’s reluctance to accept the black as an equal. By contrast, technological engineering is simple: the rocket, the reactor, and the desalination plants are devices that are expensive to develop, to be sure, but their feasibility is relatively easy to assess, and their success relatively easy to achieve once one understands the scientific principles that underlie them. It is, therefore, tempting to raise the following question: In view of the simplicity of technological engineering, and the complexity of social engineering, to what extent can social problems be circumvented by reducing them to technological problems? Can we identify Quick Technological Fixes for profound and almost infinitely complicated social problems, “fixes” that are within the grasp of modern technology, and which would either eliminate the original social problem without requiring a change in the individual’s social attitudes, or would so alter the problem as to make its resolution more feasible?

To paraphrase Ralph Nader, to what extent can technological remedies be found for social problems without first having to remove the causes of the problem? It is in this sense that I ask, “Can technology replace social engineering?”

THE MAJOR TECHNOLOGICAL FIXES OF THE PAST

To better explain what I have in mind, I shall describe how two of our profoundest social problems—poverty and war—have in some limited degree been solved by the Technological Fix, rather than by the methods of social engineering. Let me begin with poverty.

The traditional Marxian view of poverty regarded our economic ills as being primarily a question of maldistribution of goods. The Marxist recipe for elimination of poverty, therefore, was to eliminate profit, in the erroneous belief that it was the loss of this relatively small increment from the worker’s paycheck that kept him poverty-stricken. The Marxist dogma is typical of the approach of the social engineer: one tries to convince or coerce many people to forgo their short-term profits in what is presumed to be the long-term interest of the society as a whole.

The Marxian view seems archaic in this age of mass production and automation, not only to us but apparently to many Eastern bloc economists. For the brilliant advances in the technology of energy, of mass production, and of automation have created the affluent society. Technology has expanded our productive capacity so greatly that even though our distribution is still inefficient, and unfair by Marxian precept, there is more than enough to go around. Technology has provided a “fix”—greatly expanded production of goods—which enables our capitalist society to achieve many of the aims of the Marxist social engineer without going through the social revolution Marx viewed as inevitable. Technology has converted the seemingly intractable social problem of widespread poverty into a relatively tractable one.

My second example is war. The traditional Chinese position views war as primarily a moral issue: if men become good, and model themselves after the Prince of Peace, they will live in peace. This doctrine is so deeply ingrained in the spirit of all civilized men that I suppose it is a blasphemy to point out that it has never worked very well—that men have not been good, and that they are not paragons of virtue or even of reasonableness.

Though I realize it is terribly presumptuous to claim, I believe that Edward Teller may have supplied the nearest thing to a quick Technological Fix to the problem of war. The hydrogen bomb greatly increases the provocation that would precipitate large-scale war—and not because men’s motivations have been changed, not because men have become more tolerant and understanding, but rather because the appeal to the primitive instinct of self-preservation has been intensified far beyond anything we could have imagined before the H-bomb was invented. To point out these things today [1966], with the United States involved in a shooting war [in Vietnam], may sound hollow and unconvinving; yet the desperate and partial peace we have now is much better than a full-fledged exchange of thermonuclear weapons. One cannot deny that the Soviet leaders now recognize the force of H-bombs, and that this has surely contributed to the less militant attitude of the USSR. One
can only hope that the Chinese leadership, as it acquires familiarity with H-bombs, will also become less militant. If I were to be asked who has given the world a more effective means of achieving peace, our great religious leaders who urge men to love their neighbors and, thus, avoid fights, or our weapons technologists who simply present men with no rational alternative to peace, I would vote for the weapons technologists. That the peace we get is at best terribly fragile, I cannot deny; yet, as I shall explain, I think technology can help stabilize our imperfect and precarious peace.

THE TECHNOLOGICAL FIXES OF THE FUTURE

Are there other Technological Fixes on the horizon, other technologies that can reduce immensely complicated social questions to a matter of “engineering”? Are there new technologies that offer society ways of circumventing social problems and at the same time do not require individuals to renounce short-term advantage for long-term gain?

Probably the most important new Technological Fix is the Intra-Uterine Device for birth control. Before the IUD was invented, birth control demanded very strong motivation of countless individuals. Even with the pill, the individual’s motivation had to be sustained day in and day out; should it flag even temporarily, the strong motivation of the previous month might go for naught. But the IUD, being a one-shot method, greatly reduces the individual motivation required to induce a social change. To be sure, the mother must be sufficiently motivated to accept the IUD in the first place, but, as experience in India already seems to show, it is much easier to persuade the Indian mother to accept the IUD once, than it is to persuade her to take a pill every day. The IUD does not completely replace social engineering by technology; and, indeed, in some Spanish American cultures where the husband’s manliness is measured by the number of children he has, the IUD attacks only part of the problem. Yet, in many other situations, as in India, the IUD so reduces the social component of the problem as to make an impossibly difficult social problem much less hopeless.

Let me turn now to problems which from the beginning have had both technical and social components—broadly, those concerned with conservation of our resources: our environment, our water, and our raw materials for production of the means of subsistence. The social issue here arises because many people by their individual acts cause shortages and, thus, create economic, and ultimately social, imbalance. For example, people use water wastefully, or they insist on moving to California because of its climate, and so we have water shortages; or too many people drive cars in Los Angeles with its curious meteorology, and so Los Angeles suffocates from smog.

The water resources problem is a particularly good example of a complicated problem with strong social and technological connotations. Our manage-
springing up on many parched seacoasts of the world. At first these plants will produce water at municipal prices. But I believe, on the basis of research now in progress at ORNL and elsewhere, water from the sea at a cost acceptable for agriculture—less than ten cents per 1,000 gallons—is eventually in the cards. In short, for areas close to the seacoasts, technology can provide water without requiring a great and difficult-to-accomplish change in people's attitudes toward the utilization of water.*

The Technological Fix for water is based on the availability of extremely cheap energy from very large nuclear reactors. What other social consequences can one foresee flowing from really cheap energy eventually available to every country regardless of its endowment of conventional resources? Though we now see only vaguely the outlines of the possibilities, it does seem likely that from very cheap nuclear energy we shall get hydrogen by electrolysis of water, and, thence, the all important ammonia fertilizer necessary to help feed the hungry of the world; we shall reduce metals without requiring coking coal; we shall even power automobiles with electricity, via fuel cells or storage batteries, thus reducing our world's dependence on crude oil, as well as eliminating our air pollution insofar as it is caused by automobile exhaust or by the burning of fossil fuels. In short, the widespread availability of very cheap energy everywhere in the world ought to lead to an energy autarky in every country of the world; and eventually to an autarky in the many staples of life that should flow from really cheap energy.

WILL TECHNOLOGY REPLACE SOCIAL ENGINEERING?

I hope these examples suggest how social problems can be circumvented or at least reduced to less formidable proportions by the application of the Technological Fix. The examples I have given do not strike me as being fanciful, nor are they at all exhaustive. I have not touched, for example, upon the extent to which really cheap computers and improved technology of communication can help improve elementary teaching without having first to improve our elementary teachers. Nor have I mentioned Ralph Nader's brilliant observation that a safer car, and even its development and adoption by the auto company, is a quicker and probably surer way to reduce traffic deaths than is a campaign to teach people to drive more carefully. Nor have I invoked some really fanciful Technological Fixes: like providing air conditioners and free electricity to operate them for every black family in Watts on the assumption (suggested by Huntington) that race rioting is correlated with hot, humid weather, or the ultimate Technological Fix, Aldous Huxley's soma pills that eliminate human unhappiness without improving human relations in the usual sense.

*That this has not been realized should, perhaps, temper our enthusiasm for technological

My examples illustrate both the strength and the weakness of the Technological Fix for social problems. The Technological Fix accepts man's intrinsic shortcomings and circumvents them or capitalizes on them for socially useful ends. The Fix is, therefore, eminently practical and, in the short term, relatively effective. One does not wait around trying to change people's minds: if people want more water, one gets them more water rather than requiring them to reduce their use of water; if people insist on driving autos while they are drunk, one provides safer autos that prevent injuries even after a severe accident.

But the technological solutions to social problems tend to be incomplete and metastable, to replace one social problem with another. Perhaps the best example of this instability is the peace imposed upon us by the H-bomb. Evidently the pax hydrogenica is metastable in two senses: in the short term, because the aggressor still enjoys such an advantage; in the long term, because the discrepancy between have and have-not nations must eventually be resolved if we are to have permanent peace. Yet, for these particular shortcomings, technology has something to offer. To the imbalance between offense and defense, technology says let us devise passive defense which redresses the balance. A world with H-bombs and adequate civil defense is less likely to lapse into thermonuclear war than a world with H-bombs alone, at least if one conceives that the danger of the thermonuclear war mainly lies in the acts of irresponsible leaders. Anything that deters the irresponsible leader is a force for peace: a technologically sound civil defense therefore would help stabilize the balance of terror.

To the discrepancy between haves and have-nots, technology offers the nuclear energy revolution, with its possibility of autarky for haves and have-nots alike. How this might work to stabilize our metastable thermonuclear peace is suggested by the possible political effect of the recently proposed Israeli desalting plant. The Arab states I should think would be much less set upon destroying the Jordan River Project if the Israelis had a desalination plant in reserve that would nullify the effect of such action. In this connection, I think countries like ours can contribute very much. Our country will soon have to decide whether to continue to spend 5.5×10^9 per year for space exploration after our lunar landing. Is it too outrageous to suggest that some of this money be devoted to building huge nuclear desalting complexes in the arid ocean rims of the troubled world? If the plants are empowered with breeder reactors, the out-of-pocket costs, once the plants are built, should be low enough to make large-scale agriculture feasible in these areas. I am sure that for 4×10^4 we could build enough desalting capacity to feed more than ten million new mouths per year (provided we use agricultural methods that husband water), and we would thereby, help stabilize the metastable, bomb-imposed balance of terror.

*5.5 billion, equivalent to approximately 13.5 billion in today's dollars.
194 billion, equivalent to approximately 10 billion in today's dollars.
Yet, I am afraid we technologists shall not satisfy our social engineers, who tell us that our Technological Fixes do not get to the heart of the problem; they are at best temporary expedients; they create new problems as they solve old ones; to put a Technological Fix into effect requires a positive social action. Eventually, social engineering, like the Supreme Court decision on desegregation, must be invoked to solve social problems. And, of course, our social engineers are right. Technology will never replace social engineering. But technology has provided and will continue to provide to the social engineer broader options, to make intractable social problems less intractable; perhaps, most of all, technology will buy time—that precious commodity that converts violent social revolution into acceptable social evolution.

Our country now recognizes and is mobilizing around the great social problems that corrupt and disfigure our human existence. It is natural that in this mobilization we should look first to the social engineer. But, unfortunately, the apparatus most readily available to the government, like the great federal laboratories, is technologically oriented, not socially oriented. I believe we have a great opportunity here; for, as I hope I have persuaded [my readers], many of our seemingly social problems do admit of partial technological solutions. Our already deployed technological apparatus can contribute to the resolution of social questions. I plead, therefore, first for our government to deploy its laboratories, its hardware contractors, and its engineering universities around social problems. And I plead, secondly, for understanding and cooperation between technologist and social engineer. Even with all the help he can get from the technologist, the social engineer's problems are never really solved. It is only by cooperation between technologist and social engineer that we can hope to achieve what is the aim of all technologists and social engineers—a better society, and thereby, a better life, for all of us who are part of society.