Conclusions

In Case Study 1, two accounts point out different generalizations. The learner might make use of both sources of information. In Case Study 2, the morphosyntactic account is to be preferred. Do learners privilege phonological or structural cues? What kinds of patterns are they sensitive to? Becker et al. (2011); Hayes and White (2013) Possible wug studies. Contra Spanning.

INTRODUCTION

Generalizing and learning morphological alternations:
• Phonological cues (Hayes and White 2013; Gagliardi and Lidz 2014);
• Phonological uniformity (Albright 2011).
• Generalizations over syntactic structure (Embick 2010).

The data might contain one or all kinds of generalizations.
• Predicted by different theories.

Semitic languages like Modern Hebrew:
• Is nonconcatenative morphology the same as concatenative?
• How are roots and patterns represented?
• How do they interact with the rest of the grammar?
• Syntactic answers (Doron 2003; Arad 2005; Kastner in prep) and phonological answers (Bat-El 1994; Ussishkin 2005).

Alternations, allomorphy and syncretism in affixation:
• Generalizations over allomorphs:
  morphosyntactic or morphophonological?
• Case study 1: both are possible; what is the learner sensitive to?
• Case study 2: a morphosyntactic account is to be preferred.

Tease apart the kinds of generalizations learners might make.

CASE STUDY 1: VOWELS AND AFFIXES

Affixes
Vowels in the stem vary with subject agreement:
1st/2nd person: /a/
3rd person: /e/ or /i/ (depends on template)

Phonological Analysis
• If the suffix is C-initial, lower the vowel to [a].
(2) V → [a] / (C) __+[C] (for verbal suffixes)
• V/O initial: [im]-, [in]-, [im]-
• C-initial: [am]-, [am]-, [am]-, [am]-, [am]-

Not a general phonological rule of Hebrew.
• Does not apply at syllable boundaries: hiʃlim ‘completed’.
• Does not apply at morpheme boundaries: famen-fikl ‘fat-dim’.

Morphosyntactic or morphophonological analysis?

Syntactic Analysis
• Vowels spell out Voice (Oltra Massuet 1999; Wallace 2013; Tucker 2015).
• Contextual allomorphy in string adjacency (Bolbach 2000; Embick 2010; Marantz 2013).

T can condition allomorphy on local Voice.
(1)

The learner notices that the vowel changes when the structure/meaning changes.

Discussion
Archaic 3/3PL F suffix -na: C-initial, but [e] vowel.
(3) t-albaf-na ‘Y’all (f) / They all (f) will dress’
• Phonological account predicts tabafna.
• Maybe fell out of use because it is incompatible with the phonological generalization.

• Gagliardi and Lidz (2014): learn phonological cues before semantic ones (but not syntactic ones).
• Phonological account is outside-in (cf. Bolbach 2000).

Syntactic prediction: overt element between Voice and T blocks allomorphy → Case Study 2.

CASE STUDY 2: PASSIVE VOWELS

Passives
Passive stem vowels syncretize to /u/-/a/.

Phonological Analysis
Stem-based approach: derive verbs from each other.
Tense + ɸ (gidel) → melodic overwriting (gudal).

(4) Derive passive base and then overwrite with T + ɸ?
Fails to predict syncretism.
• gidel → gudal

Syncretism predicted by the theory.

Syntactic Analysis
A Pass head above Voice derives passives in Hebrew.
• Pass overwrites the first vowel (most local).
• Vowels syncretize in the passive.
• T cannot condition allomorphy of Voice over an overt element. (Kastner and Zu 2015)

Discussion
Basic observation:
• /u/-/a/ syncretism throughout the passive.
• Learnable generalization.

Syntactic analysis preferred to phonological one:
• Correctly predicts syncretism.
• Requires fewer stipulations.
• Passivization is interpreted before tense.

Spanning (Merchant 2015; poster by Grestenberger): Overgenerates allomorphy possibilities.
• See the talk by Osaki and posters by Božič and Toosarvandani.

SELECTED REFERENCES


Itamar Kastner (itamar@nyu.edu) New York University
http://www.nyu.edu/projects/itamar