What is life?

- **Self-sustained heritability**
 - Functionality is *limited* by the genome
 - Life cannot be explained entirely by functionality ("design")
 - Why do snakes have femurs?
 - Why do humans have 5 fingers per hand?
 - Why do mitochondria and chloroplasts have their own rDNA and genetic codes?
 - Because of heredity, **history** is the explanation for **current patterns**
 - "Historical constraint" (phylogenetic or genomic constraint)
 - History of life = evolution
What is evolution?

- **Evolution is a result**: heredity + variation
 - "Descent with modification"
 - **Fact**: evolution has occurred
 - Began as a hypothesis
 - Not falsified, though falsifiable
 - **Theory**: evolution is a body of explanatory principles
 - **Embodies a mechanism**: natural selection, itself a result of:
 - Variation in fitness (ability to survive to reproduce)
 - Heredity (ability to pass alleles to progeny)
 - Reproduction / multiplication (ability for population to grow)
 - **Explains a variety of phenomena**
 - Adaptations
 - Shared nonadaptive features
- **"Origin of species" vs. origin of life**
 - Difficulty of historical reconstruction increases with elapsed time
 - Not possible to reconstruct actual events before heredity originated
Origin of Life

• **Precellular, Cellular**

• **Testing hypotheses**
 – *A priori assumptions* (often not stated) may themselves be tested
 – **Hypotheses** must make falsifiable "predictions"
 • "Null" hypothesis: chance alone is responsible
 – **Predictions** are confirmed (consistent with) or refuted by **data**
 – "**Parsimony**" distinguishes between alternative, unfalsified, working hypotheses
 • "Burden of proof" for less parsimonious (more complex) hypotheses

• **Alternative hypotheses**
 – Intelligent design
 • Least parsimonious (requires a creator)
 • Lack of evidence for "design" does not falsify existence of intelligence
 – Extraterrestrial origin
 – Spontaneous self-organization and natural selection
 • Also embodies many alternative hypotheses
Precellular evolution

• "Prebiotic synthesis"
 – **Hypothesis**: The molecules of life can be formed spontaneously under "prebiotic conditions"
 – **Assumptions**: Prebiotic conditions, "uniformitarianism"
 • (NOT that humans should arise "continuously" from chimpanzees!)
 – **Predictions**
 • Amino acids and purines from prebiotic mixtures (Harold & Urey 1953)
 • Ribose from formaldehyde ("formose" reaction; Butlerow 1861)
 • Polymerization of "activated" nucleoside monomers without proteins

• The "RNA World"
 – **Hypothesis**: RNA preceded proteins and DNA as a primordial, information-bearing, catalytic molecule
 – **Assumptions**: Heredity, uniformitarianism
 – **Predictions**
 • Conserved roles for RNA in fundamental machinery of life
 • At least some RNAs should demonstrate elementary catalytic activity
 • Role for RNA as precursor to DNA may be conserved
Prebiotic conditions?
(a priori assumptions)

- **Molecules** (potentially available from atmosphere, deep ocean rifts, benthic clays)
 - H_2, CH_4, NH_3, CO, H_2S
 - Mineral catalysts (phosphorus, pyrite, clays)

- **Energy**—potential sources (cal cm$^{-2}$ yr$^{-1}$)
 - Solar radiation 2.6×10^5
 - UV at wavelengths:
 - 300-400 nm 3.4×10^3
 - 250-300 nm 5.6×10^2
 - 200-250 nm 4.1×10^1
 - <150 nm 1.7
 - Electrical discharges 4.0
 - Shock waves 1.1
 - Radiactivity 8×10^1
 - Volcanoes 1.3×10^{-1}
 - Cosmic rays 1.5×10^{-3}

Reasonable energy levels for organic synthesis
Oparin & Haldane (1920) hypothesis

- **Hypothesis:** The origin of life was prebiotic
- **Prediction:** Molecules of life should arise spontaneously in prebiotic conditions
- **Test** (Stanley Miller & Harold Urey 1953)

- **Results:**
 - >10% of C from CH$_4$ was in organic molecules
 - These included amino acids and precursors
 - Amino acids (G, A, D, V, L)
 - HCN and other cyano compounds
 - Aldehydes
Precursors to amino acids

• "Strecker synthesis"
 – Overall reaction:

\[
R-\text{CH} + \text{HC} \equiv \text{N} + \text{H}_2\text{O} \rightarrow \text{H}_2\text{N} \overset{\text{CH}}{\text{C}} \overset{\text{OH}}{\text{O}}
\]

 – In atmosphere:

\[
\begin{align*}
R-\text{CH} & \xrightarrow{+ \text{NH}_3} R-\text{CH} \xrightarrow{- \text{NH}_3} R-\text{CH} \xrightarrow{- \text{H}_2\text{O}} R-\text{CH} \xrightarrow{+ \text{H}_2\text{O}} R-\text{CH} \xrightarrow{+ \text{HCN}} R-\text{CH} \\
& \xrightarrow{- \text{HCN}}
\end{align*}
\]

 – In ocean:

\[
\begin{align*}
\text{NH}_2 & \xrightarrow{+ \text{H}_2\text{O}} \text{NH}_2 \\
\text{C} \equiv \text{N} & \xrightarrow{- \text{NH}_3} \text{O} = \text{C} \overset{\text{NH}_2}{=} \text{OH}
\end{align*}
\]
Precursors to purines

$4 \text{HCN} \xrightarrow{\text{Sunlight}} \text{HCN}$

H_2N

CH

HC

N

N

N

N

N

N

CH

CaPO_4

ATP
Precursors to ribose

- **"Formose" synthesis** (Butlerow 1861)
 - Series of condensations beginning with formaldehyde

\[\text{HCHO} + \text{HCHO} \rightarrow \text{HCOOH} \]

\[\text{HCHO} + \text{HCHO} \rightarrow \text{CH}_2\text{OH} \]

\[\text{HCHO} + \text{HCHO} \rightarrow \text{CHOHCHO} \]

\[\text{HCHO} + \text{HCHO} \rightarrow \text{HCOH} \]

\[\text{HCHO} + \text{HCHO} \rightarrow \text{CH}_2\text{OH} \]

Ribose-based nucleoside

Acyclo-nucleoside

Phosphorylation would "activate" monomers
Origin of polymers

- Model for formation of RNA by activated nucleosides

 e.g., methylated nucleoside 5'-phosphorimidazolide:

Without metals With Zn^{++}

![UV absorption graphs for chain length (poly-G)](image)
Self-assembly of macromolecules

• **Order and complexity result from self-assembly**
 – Proteinoid microspheres with internal structure
 – Multisphere assemblages
 – Membrane-like bilayers with "junctions"

• **Novel microenvironments allow:**
 – Selective permeability via lipid or proteinoid "membranes"
 – Novel (high) concentrations and enhancement of interactions
 – Chained reactions (concentrated products available as substrates)
 – Localized precipitation and organization (compartmentalization)
 – Entropy can *decrease* in subsystems (*not* a violation of the 2nd Law of Thermodynamics)
"RNA World" hypothesis
RNA preceded proteins & DNA (Orgel, Crick, Woese, 1960s)

• RNA has the essential role in peptide assembly
 – mRNA, tRNA, rRNA (which can promote translation even missing some proteins)
 – snRNAs (e.g., U1, U2, U4/6, U5)

• RNA is required for DNA replication and synthesis
 – Primer RNAs required for DNA replication
 – Telomerase RNA required for telomere synthesis
 – Deoxyribonucleotides are *derivatives* of ribonucleotides
 – Reverse transcriptase copies DNA from RNA template

• RNAs are key cofactors
 – 7S RNA (protein secretion), ATP, Coenzyme A

• Some RNAs are catalytic
 – Catalytic unit of RNase P (processes *E. coli* pre-tRNATyr)
 – Self-splicing of introns

• Some RNAs are regulatory
 – miRNAs
Group 1 self-splicing introns

- Processing occurs as a series of transesterifications
Conservation of Group 1 introns

- Common ancestry allows comparative analysis of function
 - Functionally important sequences/structures are often conserved
 - Group 1 intron structures are conserved:
 - in different genes
 - in different species (slime molds, mitochondria, chloroplasts, some bacteriophage)

Some Gr. 1 introns encode maturases, and some encode endonucleases!
Other introns

- **Group 2 self-splicing a precursor to eukaryotic spliceosome?**
 - Note that Group 2 does not require a cofactor and makes a "lariat"

- **Trans-splicing also occurs** (all mRNAs of trypanosomes, many in *C. elegans*)
 - Important implications for "exon shuffling"
RNA as polymerase

- "L-19" RNA can direct template-dependent extension
 - Depends only on availability of (spontaneous) oligos
RNA as nuclease and ligase

- Nuclease activity is similar to splicing, but site-specific
- Ligase activity is energetically the reverse
RNA as regulator of gene expression

Developmental regulatory gene

stRNA precursor

Transgene, virus, transposon, etc.

dsRNA

Dicer

ALG-1
ALG-2

(stRNA)

(miRNA)

RDE-4

siRNA

RDE-1

Repression of mRNA translation

Degradation of mRNA

Ambros, 2001
"RNA World" hypothesis
RNA preceded proteins & DNA (Orgel, Crick, Woese, 1960s)

- **RNA has the essential role in peptide assembly**
 - mRNA, tRNA, rRNA (which can promote translation even missing some proteins)
 - snRNAs (e.g., U1, U2, U4/6, U5)

- **RNA is required for DNA replication and synthesis**
 - Primer RNAs required for DNA replication
 - Telomerase RNA required for telomere synthesis
 - Deoxyribonucleotides are derivatives of ribonucleotides
 - Reverse transcriptase copies DNA from RNA template

- **RNAs are key cofactors**
 - 7S RNA (protein secretion), ATP, Coenzyme A

- **Some RNAs are catalytic**
 - Catalytic unit of RNase P (processes *E. coli* pre-tRNATyr)
 - Self-splicing of introns

- **Some RNAs are regulatory**
 - miRNAs
RNA genome

- Early RNA genome could probably self-replicate
 - Template-dependent synthesis, ligation
- Self-splicing would have allowed rapid evolution
 - Different combinations of sequences and thus functions
- Early protein synthesis was directed by RNAs
 - tRNAs, rRNA
- Early gene expression could be regulated by RNAs
 - miRNAs
- Evolution of the Genetic Code
 - Once the codons began to be set up, and complexity of the code increased, it would be difficult to change (historical constraint)
 - Order to codon groupings suggests a possible stepwise adoption of codon assignments...
Genetic code

<table>
<thead>
<tr>
<th>1st position</th>
<th>2nd position</th>
<th>3rd position</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>C</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>STOP</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>STOP</td>
</tr>
<tr>
<td>C</td>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>His</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Gln</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Gln</td>
</tr>
<tr>
<td>A</td>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Asn</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>Met</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>G</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Asp</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Glu</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Glu</td>
</tr>
</tbody>
</table>

Hydrophobic

Hydrophilic
Genetic code

- The code is "degenerate"
 - Third codon position is often completely synonymous
 - Perhaps the original machinery used only 1st & 2nd positions?
- Second position determines hydrophobicity/hydrophilicity
 - If pyrimidine, codon is hydrophobic; if purine, codon is hydrophilic
- Easiest non-enzymatic RNA synthesis encodes protein order (β-sheets)
 - RYR-YRY-RYR... : hydrophobic-hydrophilic-hydrophobic...
- Heritable order is subject to Darwinian selection
 - The stepwise process of selection will always lead to adaptations
 - Novel features arise by (duplication and) modification
Precellular evolution

"Prebiotic synthesis"
- **Hypothesis:** The molecules of life can be formed spontaneously under "prebiotic conditions"
- **Assumptions:** Prebiotic conditions, "uniformitarianism"
 - (NOT that humans should arise continuously from chimpanzees!)
- **Predictions**
 - Amino acids and purines from prebiotic mixtures (Harold & Urey 1953)
 - Ribose from formaldehyde ("formose" reaction; Butlerow 1861)
 - Polymerization of "activated" nucleoside monomers without proteins

The "RNA World"
- **Hypothesis:** RNA preceded proteins and DNA as a primordial, information-bearing, catalytic molecule
- **Assumptions:** Heredity, uniformitarianism
- **Predictions:**
 - Conserved roles for RNA in fundamental machinery of life
 - At least some RNAs should demonstrate elementary catalytic activity
 - Role for RNA as precursor to DNA may be conserved
Next time

• Cellular evolution
 – Molecular systematics
 – The evolution of plastids
 – Rooting the tree of life with gene duplications
 – The evolution of introns: recent or ancient?
 – Exon shuffling in the evolution of novel functions