Propositional Profusion and the Liar
Cian Dorr
Arché Propositions Workshop, May 2011

1 Against ‘true sentence’ and ‘true utterance’

2 Two Liars

(Q₄) No proposition expressed by \(Q₄\) is true.

(Q₃) Some proposition expressed by \(Q₃\) is not true.

(T) The proposition that \(φ\) is true iff \(φ\).

(E) ‘\(φ\)’ expresses the proposition that \(φ\).

Argument that \(Q₃\) expresses more than one proposition:

(1) \(Q₃\) expresses the proposition that \(Q₃\) expresses some proposition that isn’t true. ((E))

(2) If \(Q₃\) expresses only true propositions, then the proposition that \(Q₃\) expresses some proposition that isn’t true is true. ((1))

(3) If \(Q₃\) expresses only true propositions, then some proposition expressed by \(Q₃\) is not true. (2, T)

(4) Some proposition expressed by \(Q₃\) is not true. ((3))

(5) The proposition that \(Q₃\) expresses some proposition that isn’t true is true. (4, T)

(6) \(Q₃\) expresses at least one true proposition. (1,5)

(7) \(Q₃\) expresses at least two propositions. (3, 6)

(A parallel argument shows that \(Q₄\) expresses both true and false propositions.

3 Not all propositions semantically expressed are asserted on any given occasion

Note that line (4) of this proof is just \(Q₃\) itself. What am I up to, uttering sentences that by my own lights semantically express false propositions (as well as true ones)?

Answer: Well, I am not asserting any of those false propositions—I am asserting only truths. This happens all the time with sentences that semantically express multiple propositions.

4 Assertion-based Liars

(R₄) Jones is not asserting anything true.

(R₃) Jones is asserting at least one thing that is not true.

Suppose Jones is in the midst of uttering \(R₃\). He is a competent speaker and not engaging in any sort of nonliterality. So we have good reason to think that he is asserting that he is asserting at least one untruth. So it can’t be that he is asserting only truths. So Jones is asserting at least one thing that is not true. (As well as the truth that he is asserting at least one untruth.)

Note that towards the end of the above reasoning, I just uttered the sentence \(R₃\) myself. But unlike Jones, I didn’t thereby assert anything false.

5 Is there a mystery here?

‘You claim to have established that there is a set of propositions, all of which are true, such that the sentence \(R₃\) can be used literally so as to assert only those propositions. What stopped Jones from doing that?’ — Well, it’s a theorem that for any property of propositions \(F\) (e.g. being asserted by Jones, being Saul’s favourite proposition, being semantically expressed by the sentence written on such-and-such blackboard, being identical to the proposi-
tion that \(P \), if the proposition \textit{that at least one F proposition is not true} has \(F \), then \(F \) is had by at least one untrue proposition and at least one true proposition.

- \textit{Analogy}: no mysterious force is needed to explain why no barber shaves all and only those who do not shave themselves. Or why no-one is a secretary of a club whose members are exactly those who are secretary to some club of which they are not a member, without also being secretary of some other club.

6 \textbf{Comparison with existing accounts of the Liar}

Those Field calls ‘classical gap theorists’ assert ‘“This sentence is not true” is not true (and also not false)’. The challenge they face is to explain what they are up to, given that by their own lights they are uttering sentences that are not true. Is there some special status of ‘assertability’ that these sentences possess, which makes it acceptable to utter them despite their untruth? If so, what about ‘This sentence is not assertable?’ Only Maudlin tries to address these challenges, but I don’t find his attempt satisfying.

My view also has something in common with ‘contextualist’ accounts of the Liar. But these take a wrong turn immediately when they devote all their energy to talking about the alleged context-sensitive behaviour of bare ‘true’, without saying anything about the predicate ‘true relative to \(c \)’ which they use in their theorising. They have nothing helpful to say about ‘This sentence is not true relative to the context I am now in’.

7 \textbf{The status of E}

\textit{Plausible claims:}

\begin{itemize}
 \item (i) When one sentence follows from some others in classical logic, and they semantically express only truths, then it semantically expresses only truths.
 \item (ii) Instances of \textit{(T)} semantically express only truths.
\end{itemize}

Back in section 2, I gave a classically valid argument from the following instance of \((E) \)

\[(1) \quad Q_3 \text{ expresses the proposition that } Q_3 \text{ expresses some proposition that isn’t true. to } Q_3, \text{ which is a sentence that expresses at least one untruth. From (i) and (ii), we can conclude that (1) must also express at least one untruth. Despite its appealing character, we cannot claim that all instances of \((E) \) express only truths. (Cf. Montague’s theorem)}

8 \textbf{‘Strengthened’ Liars}

\textit{Natural thought: say that a sentence \(\phi \) \textit{standardly expresses} a proposition \(p \) iff \(\phi \) expresses \(p \), and there is no instance \(\psi \) of \((E) \) and false proposition \(q \) such that \(\langle \phi \land \psi \rangle \) expresses the conjunction of \(p \) and \(q \).

\begin{itemize}
 \item \((Q_3^+) \) \(Q_3^+ \) standardly expresses at least one untruth.
 \item \((Q_4^+) \) \(Q_4^+ \) standardly expresses nothing true.
 \item \((E^+) \) ‘\(\phi \)’ standardly expresses the proposition that \(\phi \)
\end{itemize}

If \(Q_3^+ \) standardly expresses \textit{that} \(Q_3^+ \textit{ standardly expresses at least one untruth} \), then \(Q_3^+ \textit{ standardly expresses at least one untruth (and at least one truth).}

Further upshot: \(E^+ \) has instances that don’t standardly express only truths.\ldots

We could then introduce a notion of \textit{super-standard} expressing: \(\phi \) \textit{super-standardly} expresses a proposition \(p \) iff \(\phi \) expresses \(p \), and there is no instance \(\psi \) of \(E^+ \) and false proposition \(q \) such that \(\langle \phi \land \psi \rangle \) standardly expresses the conjunction of \(p \) and \(q \).\ldots