An Analysis of the 2000 Presidential Term: The Effects of Presidential Approval on the use of Fear Related Messages

Jessica Yoo
New York University

This paper investigates the relationship between presidential approval ratings and the use of fear related messages (in the form of the Homeland Security Advisory System) for President George W. Bush’s 1st term (beginning March 12, 2002-November 2, 2004). To evaluate this proposition, several time-series analyses on the relationship between presidential approval and the government issued terror warnings were conducted.

INTRODUCTION

For many years, polls have been taken to measure the progress and level of the president’s approval rating in the nation. It makes one wonder why money is spent every day to conduct these polls and make these studies. What effect does the presidential approval rating have on the President and his actions? Is the President consistently aware of his standing with the people or does he only become aware of his approval rating as the next election comes closer?

This thesis will study the effect of presidential approval ratings on the use of fear-related messages. This information will help the reader determine whether a decrease in the approval rating (popularity) for the president gives him increasing incentive to divert the public’s attention with the use of fear related messages, including the possible crisis of war.

Over the years, comprehensive research and literature has been written regarding presidential approval ratings as well as on the use of diversionary tactics, also referred to
as diversionary war. Even so, many political scientists and scholars have found difficulty in reaching the same conclusion, especially on the issue of diversionary war. Conflicting research and results have been formed on the effect and use of diversionary tactics, especially concerning the President of the United States (since extensive data and research has been performed on the United States). Much of the research discussed in the literature questions the motive for diversionary tactics such as low approval ratings and players’ options, or the success and likely use of diversion. Some have even attempted to rewrite the theory and definition of diversionary war.

The purpose of the paper is to shed light on this topic by examining the executive administration’s reactions to the president’s approval ratings through the changes in the Homeland Security Advisory System (color-coded alarm) in proximity to the 2004 elections. In order to do so thoroughly, I also test the effects of the government issued warnings/ fear related messages on presidential approval, which also tests Willer’s (2004) work. Hopefully, in doing so we will finally know the answer of which comes first: the chicken or the egg; or in this case, presidential approval rating or the fear related message?

REVIEW OF THE LITERATURE

The following literature gives the reader an overview of the contributions and research done in the field of diversionary war and presidential approval thus far. The progress of research done on diversionary war begins with its effect on the president’s approval rating, domestic structures and their effect on leaders, other possible factors influencing diversionary behavior, and then, finally, to novel reevaluations of the entire
theory and its definition. In the field of American Politics, the progress of research done begins with the cyclical model of presidential approval, to a study of its effect on the president with little evidence of the president’s conscious awareness of an election, and then, finally, to the factors which affect the president’s approval.

Much research has been done on presidential approval and its effect on the president, if any. Stimson (1976) has found a cyclical model and pattern for public support or approval for American presidents to be in the shape of a parabolic curve, with a focus in the latter half of the presidential term. Using the Gallup polls taken over more or less monthly intervals since 1945, Stimson finds that “…they (the parabolic model) are systematically positive early in the term, negative in the middle, and positive again in the end” (14) as well as that only increases in unemployment affect presidential popularity. This parabolic model of presidential approval, which is an indicator of public feeling and causal agents in and of themselves, leads to the suspicion that presidential approval may be almost independent of the President’s behavior in office. Thus, presidential approval has little influence and effect on the president. Collier and Sullivan (1995) try to resolve the conflict between the standard of analyses of approval and presidential influence by creating two theoretical linkages: the standard “success” linkage and a “conversion” linkage. They define the standard success linkage as being between prestige and floor support while the conversion linkage involves the administration’s ability to convert members initially not supporting the administration to voting favorably. Collier and Sullivan do so by relying on a combination of Bond and Fleisher’s (1990) standard voting data as well as administration headcounts from Eisenhower to Ford (collecting data from the presidential libraries). Using these linkages as well as “sway”, they come to find
there is little evidence supporting the hypothesis suggesting a partisan effect and find that supporters in the House and Senate respond more to improving approval regardless of their high initial support.* (note: this study deals with only a limited portion of presidential approval by comparing only the initial and final support values) Thus, it essentially does not matter if the president is extremely popular, the only importance is whether or not approval improves. Therefore, it would aid the president more if he were extremely unpopular and gained support as his term began than if he initially had high approval which continued to be stable or began to decrease throughout his term.

Although approval rating as an independent variable has been found to have little effect on the president and his decisions, there have been several factors found to influence approval rating. Through an examination of the public’s evaluation of the president’s performance on issues that are salient by means of content analysis of media coverage of issues over a cross-sectional multichotomous logit-regression analysis of 25 national public opinion polls, and a time-series regression analysis of the relationship between issue salience and their impact on presidential approval, Edwards III et al. (1995) have found the views of the president’s handling of economic policy have a strong impact on approval while the presence of an election does not hold a strong influence on the content of presidential agendas (Andrade and Young, 1996). Also, it has been found that increases in employment will affect presidential popularity, however, decreases and stable levels do not affect it at all * (Stimson, 1976).

Even though presidential approval and several factors have been taken into consideration in its examination, many political scientists have failed to examine the effects of presidential approval ratings on the president’s use of fear-related messages as
a diversion to the public. They have yet to examine the causes and timing for the fear-related messages, specifically the Homeland Security Advisory System alerts. No one has studied if lower presidential approval provides more incentive for the president to use fear-related messages in order to divert the public’s attention or whether or not high presidential approval will bring about fewer fear-related messages.

In the field of International Politics, several scholars have tested the diversionary theory as well as several aspects of it. Morgan and Bickers (1992) attempt to revise the diversionary theory (prior to what was written before them) by arguing that “…diversionary behavior typically should involve actions short of war”(25) and argue that a state leader will treat an erosion of domestic support more seriously when it comes from the leader’s ruling coalition than from other domestic groups. In doing so, Morgan and Bickers examined the revised theory for the U.S. from 1953 to 1976. Their results indicate that lower levels of partisan approval are associated with higher probabilities of aggressive action by the U.S., and decreasing levels of support for the president among members of his own party increase the likelihood of an aggressive action. In other words, “…the results of the probit and tobit estimations provide strong results favoring our diversionary hypothesis. The level of partisan approval for the president is significantly related to the probability and timing of aggressive actions by the United States”(47). This supports other scholars who have shown that state leaders (in democracies) may be more prone to adopt aggressive policies when their countries face domestic economic problems.
Richards et al. (1993) argue that while the “…results indicate that domestic politics should have little impact on decisions regarding foreign aggression….our analysis indicates that state leaders can, on occasion, engage in aggressive foreign policies for domestic political purposes”(528). Richards et al. hoped to construct a model which would be empirically informed and “…treat the situation as a multi-sequential game with asymmetric information involving a state leader and a public to whom she or he is answerable”(510). They placed the game and its players with labels such as “good manager with good economy,” “good manager with bad economy,” “bad manager with good economy,” and “bad manager with bad economy” and found that: “…it is competent executives who choose to divert”(518). Basically, the executives wish to trick the public into thinking that they are competent executives even if this may not be the case. Richards et al. find that “A competent manager faced with a good economy engages in diversionary behavior when the expected utility of diversion is greater than the expected utility of not engaging in diversion…”(518). On the other hand, the deception of diversion is only profitable with regard to the probability of success given an incompetent executive: “Successful deception can make diversion a dominant strategy for an incompetent executive and can make that executive be improperly classified by the public as competent. Thus we expect to see state leaders who are preparing to adopt aggressive foreign policies for diversionary purposes bracing the public for a ‘difficult’ mission”(527). In the end, Richards et al. come to the conclusion that diversionary behavior should be rare and consider this to be a strong result “…considering that the model was expressly designed to provide leaders with the incentive to divert”(527).
Miller (1995) focuses on the effect of domestic structures and systemic forces on the response of leaders to military threats from abroad by looking at specifying the relationships among domestic variables and their consequent effects on foreign policy. His method of analysis is the probit analysis of 294 militarized interstate disputes (indicated by level of hostility) during the period from 1955 to 1976. In doing so, Miller found strong support for the correlation that the higher the level of hostility of the initiator, the greater the probability that the target responds with force and found a negative relationship between leader popularity and target response. Miller also found the relationship between leader popularity and target response to be much stronger in two domestic contexts: for leaders with low levels of policy resources and for leaders of more autocratic systems. He also notes that “…leaders of less autocratic governments are about 4 % more likely to use force”(778) and found “…the relationship between leader popularity and the political use of force is conditioned by domestic structures”(779).

Meernik and Waterman (1996) argue that few if any relationships are likely to be found between presidential popularity, congressional support, economic conditions and elections and the use of force. They challenge the most crucial assumption of the diversionary model which is that presidents are led to engage in diversionary behavior because of expected windfalls in public support. They argue that there is little evidence to support this. Meernik and Waterman test their hypotheses by looking at the political use of military force by American presidents in the post-World War II era (1953-88). They use data on international crises likely to be of interest to American presidents instead of relying upon an artificial unit of analysis from which presidents are predicted
to reach decisions and used criteria for identifying international events likely to fit this category from Job and Ostrom (1986) and Meernik (1994).

In doing so, Meernik and Waterman found that in international crises from 1953 to 1988, domestic political conditions played little role in the decision to use force; aggregate and partisan approval, roll-call victories in the Congress and electoral periods all fail to achieve statistical significance. The misery index is statistically significant. They found that presidents appear to be more willing to use force when economic conditions are favorable and that “…presidents are more likely to use military force during major international crises”(583). The only domestic variable that is statistically significant and in the predicted direction is the variable measuring partisan support in Congress, therefore: “…when support among members of the president’s party in Congress declines, his willingness to use force increases”(583). Meernik and Waterman found that presidents are more likely to use military force during major international crises. These results lead them to believe that presidents are not motivated by domestic conditions when determining whether to use military force during an international crisis.

Gelpi (1997) argues that the reason why the relationship between domestic unrest and international conflict is not supported empirically is because existing studies focus too narrowly on the incentives state leaders have to use external force as a diversionary tactic without considering alternative solutions to quiting domestic unrest. He argues that leaders can choose among at least three strategies when faced with domestic unrest: (1) grant the demands of the dissatisfied group, (2) repress the dissatisfied groups by force, and (3) divert the public’s attention by using force externally. In looking at these
various factors, Gelpi analyzes the initiation of force by the challenging states in 180 international crises between 1948 and 1982.

In his analysis, he found that authoritarian states do not respond to domestic unrest by initiating conflict internationally. Democratic states, however, are more likely to initiate force in an international crisis when faced with domestic unrest. Also, the challenger’s level of democracy has almost no effect on its propensity to initiate force. Gelpi also found that “…the increase from no protests in the months preceding a crisis to an average of five per month reduces the likelihood that an authoritarian leader will initiate major force in a crisis from 29% to 0.008%”(270-271). The increase in protests from zero to five incidents per month reduces the probability that a mixed regime will initiate major force from 32% to 7%. Also, the impact of the issues at stake of the state has substantial impact, but does not outweigh or outstrip the influence of domestic unrest.

Heldt (1999), on the other hand, took a look at the costs and risks involved in diversionary force and contended that regime leaders are risk and cost averse, not risk and cost willing. In doing so, Heldt assumes that democratically elected leaders are more vulnerable to foreign policy failures than are leaders in nondemocracies. The data set he uses covers the period from 1950 to 1990, is global, and includes 832 annual observations. Heldt finds that “…the diversionary use of force is used only under the restrictive condition that no significant economic dependence exists”(471). Therefore, diversion is characterized by both low risk as well as by low cost. However, contrary to thought, democracy does not make leaders in challenger states more inclined to use armed force during adverse domestic conditions.
Dassel and Reinhardt (1999) examined the type of domestic strife which threatens the military’s interests and thereby encourages aggression. Since the military is often a relatively autonomous actor, Dassel and Reinhardt break away from classical approaches of previous diversionary theory and place the military at the center of the analysis. In viewing and testing the diversionary theory in this way, Dassel and Reinhardt find that: “Our tests yield powerful evidence that contested institutions increase the probability of the initiation of violence, either at home or abroad, or just abroad”(71). The contestation of political institutions increases the chance that violence will be used, in particular, abroad.

Meernik (2000) argues that others who have written on the subject may have not/have failed to take into account selection effects and, in doing so, have “…erroneously concluded that presidents use force to divert public attention”(547). Therefore, Meernik goes to show how unbiased models may be done by analyzing the crisis behavior of the USA from 1948-90. He chooses the USA because it is the country that has had most of diversionary literature written on and tested. Meernik takes into account all the literature that has been written on the subject and what their results are.

In the end, Meernik finds that “…presidents are more likely to use force the greater their level of popularity” and that “As approval ratings decline, the likelihood of a use of force increases”(558). Therefore, as a president’s approval rating or popularity is at a high level as well as when his popularity is decreasing, the president is more likely to engage in diversion or force. Thus, it appears that despite the circumstances, unless the president’s popularity is stable and not at a very high level, there is always more likelihood for the president to engage in the use of force.
Bennett and Nordstrom (2000) focus on using economic conditions to understand when rivalries are likely to escalate or end. Their major arguments suggest multiple types of outcome behaviors in response to economic problems because states may either externalize or seek to end a rivalry in response to their own problems. Bennett and Nordstrom analyze the population of rival dyads from 1816 through 1992. In doing so, Bennett and Nordstrom find that “…diversionary conflict was a more likely reaction to internal problems than was rivalry termination; rivalry termination actually appeared most likely in the context of good economic conditions within the rivals” (58). Bennett and Nordstrom’s results contradict Gelpi’s (1997) finding that democracies are more sensitive to diversionary incentives than are autocratic regimes.

Robb Willer (2004), a graduate student in the Department of Sociology at Cornell University, focuses on testing the social identity theory which asserts that a fundamental cognitive tendency leads individuals to categorize groups, and other stimuli, in terms of opposites. In doing so, Willer uses presidential approval as the dependent variable in his examination. Willer studies whether or not the diversion of 9-11 and other, what he calls, “shocks” have an effect on the president’s presidential approval ratings. Willer identifies five shocks on the public which are: September 11th, the beginning of military action in Afghanistan, the beginning of the Iraq War, the capture of Saddam Hussein, and the first television broadcast of the Abu Ghraib prison photographs. This is interesting since Bush’s job performance climbed from 51% in the Gallup poll of September 10, 2001 to a remarkable 86% in the next poll released. Through his analysis, Willer found that the terror warnings increase general approval levels.
Although many scholars have examined the cause and likelihood for diversionary theory, it is still unclear whether presidential approval ratings have an effect on the use of diversion. Scholars have also yet to test which variable affects the other; if it is the approval rating that affects the use of diversion or if it is the diversion that affects the presidential approval rating. Diversion, in this case, includes fear-related messages and those actions that come before and up to the point of war. I hope to find the answer to the question at hand in my analysis.

CAUSAL MODEL

It has been found that diversionary tactics have been used in order to boost up the president’s support and cause a “rally around the flag” effect. Miller (1995) has found that the lower the popularity value is for a leader, the likelihood that a leader will respond to force or resort to some type of diversion increases. Andrade and Young (1996) also find this to be true: “Declining levels of approval, therefore, may encourage presidents to focus on foreign policy in the hope of ‘diverting’ the public’s attention from domestic ills” (594). Morgan and Bickers (1992) also indicate in their results that lower levels of partisan approval are associated with higher probabilities of aggressive action by the U.S. as well as decreasing levels of support for the president among members of his own party increase the likelihood of an aggressive action. In other words, “The level of partisan approval for the president is significantly related to the probability and timing of aggressive actions by the United States” (47).

As a diversion, the declaration and beginning of a war may not be necessary to have the wanted effect on the public: “Lower levels of hostile actions, such as threats to
use force, shows of force, and uses of force short of war, may be adequate to create the perception of a foreign threat, are less costly and less risky, and may actually be more effective at increasing domestic cohesion….but the causal mechanism suggested by the diversionary theory need not include war as the tactic of choice. Lower levels of foreign aggressiveness may be preferred as a means of rallying domestic support” (Morgan and Bickers 1992, 32). Even in his analysis, Willer (2004) found that the terror warnings increase general approval levels which may give incentive and reason for the president to use them (terror warnings) during periods of low approval ratings.

Also, one can assume that the president will like to remain in office and in power, thus, he will be aware of his standing with the people as the next election comes closer. This goes under the evidence that leaders are rational and logical players, who want to stay in office (Richards et al. 1993). In order to test the effect of the upcoming election on the president and the use of fear related messages as a diversion to the public during periods of low approval, the variable days to election was created. This variable tests to see if the president becomes more likely to use diversion as the upcoming election comes closer or if he fails to become aware of his standing even as election day draws near.

In terms of higher likelihood of the use of diversionary tactics by certain regimes over others, Gelpi (1997) found that with the options given to a regime leader, be that authoritarian or democratic or mixed, that the democratic leader or democracies tend to be more prone to engage in major force internationally for diversionary purposes since it is less costly than suppressing domestic unrest violently and the threat of losing power from the winning coalition lessens. Therefore, it appears plausible that a decrease in
presidential approval ratings will give the president incentive to divert the public’s attention using fear-related messages (ie. changes in the national alert system).

HYPOTHESES

The principle of diversionary behavior is that presidents are more likely to use force when their approval ratings are declining. According to Meernik (2000), “…declining approval provides the political justification for diversionary behavior”(553). This suggests the following hypothesis:

Hypothesis 1: A decrease in the president’s approval ratings or popularity gives him increasing incentive to divert the public’s attention with fear related messages, including the possible crisis of war.

In stating this hypothesis, I assume diversionary behavior is not only to be considered as the event of war or international conflict. I assume diversionary behavior also includes the events that lead up to such a conflict or international war, including conflict negotiations, public speeches on the possible crisis, etc.

Although Meernik and Waterman (1996) fail to find any statistical significance or relationship between presidential popularity, congressional support, economic conditions and elections with the use of force, I assume that there is a relationship between days to the election, presidential popularity and the use of diversion. I use the days to election variable in my data and, therefore, hypothesize that:
Hypothesis 2: As the following election day comes closer, the president will have increasing incentive to divert the public’s attention with fear related messages, including the possible crisis of war, in times of low or decreasing support.

In stating this hypothesis, I assume that as election day is farther away (days until the next election) the president’s consciousness of his level of public support is decreasing in importance. I assume that the president becomes increasingly aware of his standing with the public as election day approaches. This goes under the evidence that leaders are rational and logical players, who want to stay in office (Richards et al. 1993).

DATA AND METHODOLOGY

To discern the relationship, if any, between presidential approval and the use of fear related messages as a form of diversionary behavior, the Roper Center’s record on Presidential Job Performance from 2002-2004 and the timing and changes in the Homeland Security Advisory System during President George W. Bush’s term up until the 2004 election are used.

Dependent Variable. The aim of this study is to examine if presidential approval drives the use of fear related messages from the president and his administration. Therefore, the dependent variable is the Homeland Security Advisory System ratings.

Homeland Security Advisory System. The HSAS is based on a five color-coded national alarm guide. These colors are: low risk (green), guarded risk (blue), elevated risk
(yellow), high risk (orange), and severe risk (red). Green is coded as having a value of 1, blue is coded as 2, yellow is coded as 3, orange is coded as 4, and red is coded as 5. Giving each color an ordinal value, we can observe the effects of presidential approval ratings on the changes in the national alarm system. However, since the levels of the warning system remain at Yellow (3) and Orange (4) levels during the period I am examining, their values were changed to Yellow (0) and Orange (1) for the probit equation to be used.

*Since the website of the Department of Homeland Security did not have efficient records posted on the color-coded alarms dealing with the date and change in color of each of the alarm changes, Lexis Nexis was used to check if there were any missing from the records taken from Homeland Security. Missing dates and changes were provided by various newspaper articles reporting the condition of the nation. In fact, there were several dates and changes missing from the website of Homeland Security, which may be due to the criticism received on the frequent alert changes since 9-11. Therefore, I have counted eleven changes in the color scheme of the Homeland Security Advisory System during the period from March 12th, 2002 to November 2nd, 2004. In order to ensure that none of the data was incomplete, several searches were done on Lexis Nexis. Key words such as “National,” “Alarm,” “Change,” “Homeland Security,” and “Advisory System” were inputted into Lexis Nexis’ search engine. I have also cross checked the data gathered on Lexis Nexis with the records from the Department of Homeland Security, which I requested through the Freedom Of Information Act (FOIA). Although the results were not identical, most of the dates and information gathered through Lexis Nexis were a day apart from the records received from the Department of Homeland Security. There
was one warning status change (for the duration of January 9th, 2004 to January 13th, 2004) that I did not have in my data, which has been corrected.

Although Willer (2004) deals with the same period as mine, he does not use the Homeland Security Advisory System as a measurement, but uses five focal points (events and media reports) during the period which he defines as five main shocks on the public. Willer defines these five shocks as: September 11th, the beginning of military action in Afghanistan, the beginning of the Iraq War, the capture of Saddam Hussein, and the first television broadcast of the Abu Ghraib prison photographs. Willer also collected data on government-issued terror warnings and presidential approval ratings during the time period extending from February 1, 2001 to May 9, 2004. These government-issued terror warnings includes warnings from the Federal Bureau of Investigation, U.S. Attorney General, and the Department of Homeland Security, which occasionally warned the U.S. public of increased risks of terrorists attacks. However, Willer notes that some and not all of these terrorism warnings were accompanied by an elevation of the Homeland Security Advisory System’s current threat level. Willer also notes that from the beginning of the advisory system on March 12, 2002 until election day, the alert level was always Orange (“High”) or Yellow (“Elevated”).

Independent Variable. The independent variable in this study is the president’s approval ratings, which are taken from the Roper Center (which combines the poll ratings of various newspapers and organizations into one). Since there are ratings which overlap each other, I have taken the earliest date within the range of a poll and used the
percentage that corresponds to it until the next following poll comes in place. For the polls that overlap during a specific time period exactly, I take the previous one listed for that time period and the second one as a continuation until the next beginning poll date occurs.

The Roper Center is used as the main source for data on presidential approval ratings. These presidential approval ratings incorporate percentages from a sample pool of likely voters without selection bias or dependence on party affiliation, gender, age, education, income, or the ethnicity of a voter. The sample pool for these presidential poll ratings range from 800-2400 voters with a mean of 1000 people. The various organizations and newspapers (including joint cooperations between two or more organizations) from which the Roper Center has gathered information are:

Time Variable. To take time into account in my data, I created a “days to election” variable which is a linear variable that decreases as the date of the election comes nearer/closer to the present.
Once I have correlated the fluctuations in the color-coded alerts with the president’s approval rating, I can go back and see whether or not the president’s approval rating had an effect on the changes or variation in color scheme and timing of these alerts. This assumes, however, that the president will want to stay in office and power. This is the general assumption of every political scientist; that once in power, the person will want to stay in power no matter what type of regime or government: authoritarian or democratic.

However, I have to keep in mind that there may be a lag time between the event and effect on the people. I do not assume that once the president’s approval rating decreases that the change in the HSAS will change levels immediately. Therefore, I have to give a period of time in which the effect on fear related messages, if it does occur, can appear in the form of a change in level in the national alarm system. The time lags given for this analysis will be a period of 1 week, 2 weeks, and a period of 3 weeks.

A possible future expansion of research on this project would be to use a variable for partisan support within Congress for the president and to examine whether or not presidential approval rating within Congress has any effect on the use of fear related messages from the President and the president’s administration. There have been studies which suggest strong support for partisan support within Congress having an effect on the use of diversionary war from the president (Meernik and Waterman, 1996). This domestic variable has stronger support and correlation with the use of diversionary tactics than public approval of the president. I would have liked to incorporate this variable into my analysis, however, since the Homeland Security Advisory System (national alarm...
system) did not begin until 2002, there is not enough variation for presidential approval ratings within Congress for this time period.

The graph in appendix A displays the data points (presidential approval ratings) from the beginning of President George W. Bush’s presidential term (January 20, 2001) up until the next presidential election (November 2, 2004). The graph shows the changes in the president’s approval rating and (one will notice) a steady range in approval rating in the beginning of his term with a high increase in the month of September (around and after the time of the 9-11 terrorist attack in the year 2001). From that point on, there appears to be a steady linear decrease with a few (three times) increases in approval before continuing to decrease again in a somewhat steady linear line.

The graph in appendix B displays the president’s approval rating along with the Homeland Security Advisory System (warning status) levels over time (January 20, 2001 to November 2, 2004). For visual convenience, the warning status levels in the graph in appendix B have been given the values 20 and 30; the value 20 replaces periods when the warning status level is at 3 (Yellow level) and the value 30 replaces periods when the warning status level is at 4 (Orange level).

Regression /Probit Equations

\[HSAS = B1 \text{Popularity Rating} + B2 \text{Time \text{‘}til Election Day} + B3 \text{Popularity Rating*Time Until Election Day} \]

\[^\text{____} \text{(coded as 0 and 1)} \]
The HSAS ratings have been coded into five different numbers, thus, there should be five categories for the dependent variable. However, since HSAS ratings have stayed consistently on two levels, there are only two categories for the dependent variable. Therefore, dprobit is used in this analysis. Dprobit is the function used to regress dependent variables with the values of 0 and 1, unlike regression equations which are used for dependent variables with greater values. A dprobit function works differently than a probit function in STATA because the dprobit interprets the coefficients (of the variables being tested) that result from a probit function.

Lags. Independent variable lags are used to assess the duration of the effects of the independent variable. I created three time lags. The time lags given for this analysis are for a period of 1 week, 2 weeks, and a period of 3 weeks.

Interaction Variable. An interaction variable between approval rating and days to election was created and labeled, appdays. This interaction variable will allow us to examine whether or not there is an additional affect on the warning status as days to election increases (election date gets farther away).

RESULTS

Table 1 addresses the first hypothesis and shows the results from the dprobit model explaining the effect of presidential approval on the use of fear related messages, in this case, the use of the Homeland Security Advisory System (warning status). When
the approval rating variable is isolated and tested by itself as seen in table 1, it is highly significant with a negative coefficient (in the direction that one would expect it to be). The negative coefficient on approval rating can be translated as such: when approval rating increases (goes up), then the warning status goes down (to the level of Yellow); and when approval rating decreases (goes down), then the warning status goes up (to the level of Orange).

Table 1
LOGISTIC DPROBIT OF PRESIDENTIAL APPROVAL RATING ON WARNING STATUS FROM MARCH 12TH, 2002 TO THE 2004 PRESIDENTIAL ELECTION

| Coefficient | SE | p>|z| |
|-------------------|-------------|-----|
| Approval Rating | -0.0043019**| 0.0014068 | 0.002 |

*Significant at p<.05 level
**Significant at p<.01 level

The results from table 1 support hypothesis 1 and the coefficient is in the direction that one would expect it to be.

Table 2
LOGISTIC DPROBIT OF PRESIDENTIAL APPROVAL RATING AND DAYS TO ELECTION ON WARNING STATUS FROM MARCH 12TH, 2002 TO THE 2004 PRESIDENTIAL ELECTION

| Coefficient | SE | p>|z| |
|-------------------|-------------|-----|
| Approval Rating | 0.02287** | 0.0024463 | 0.000 |
Table 2 addresses hypothesis 2, which deals with the president’s incentive to divert the public’s attention as the following election day comes closer. Although approval rating as well as days to election are highly significant, approval rating is no longer in the direction that one would expect it to be in. The negative sign before the approval rating coefficient now becomes a positive sign while the days to election variable has a negative coefficient. Approval rating is positive, thus, as approval rating increases (goes up), the warning status goes up (to Orange) and as approval rating decreases (goes down), the warning status goes down (to Yellow).

Days to election, however, has a negative coefficient meaning that as days to election decreases (election day is getting closer), the warning status gets higher (changes from Yellow to Orange status level) and as days to election increases (election day is going farther away), the warning status gets lower (changes from Orange to Yellow status level). This is in the direction one would expect it to be and shows that the president is conscious of his standing as the next election draws near. This would support hypothesis 2.

Table 2

| Days to Election | -0.0010555** | 0.0000845 | 0.000 |

*Significant at p<.05 level
**Significant at p<.01 level
Logistic Dprobit of Presidential Approval Rating, Days to Election, and Interaction Variable on Warning Status from March 12th, 2002 to the 2004 Presidential Election

| | Coefficient | SE | p>|z| |
|------------------|-------------|--------|-----|
| Approval Rating | 0.0285088** | 0.0038887 | 0.000 |
| Days to Election | -0.0004608 | 0.0003252 | 0.155 |
| Interaction Variable (Appdays) | -0.0000106^ | 5.63e-06 | 0.061 |

^Significant at p<.1 level
*Significant at p<.05 level
**Significant at p<.01 level

Table 3 shows the results of the effect of approval rating, days to election, and the interaction variable (approval rating*days to election) on the use of fear related messages (warning status). When days to election is at zero (election day), there is a positive coefficient for approval rating, thus the direction of approval rating and the level of warning status is the same (when one goes up, the other goes up and when goes down, the other goes down as well). This does not support hypothesis 1. When approval rating is zero, there is a negative coefficient for days to election, therefore, it is in the direction that one would expect, however it is not significant. There is an additional negative effect of approval rating on warning status as days to election increases (election gets farther away).
Table 4
LOGISTIC DPROBIT OF PRESIDENTIAL APPROVAL RATING AND APPROVAL LAGS ON WARNING STATUS FROM MARCH 12TH, 2002 TO THE 2004 PRESIDENTIAL ELECTION

| | Coefficient | SE | p>|z| |
|-------------------------|-------------|-------------|-----|
| Approval Rating | 0.0122083** | 0.0029062 | 0.000 |
| 1 week approval lag | -0.0001305 | 0.002879 | 0.964 |
| 2 week approval lag | -0.0067527* | 0.0026417 | 0.011 |
| 3 week approval lag | -0.0140964**| 0.0024673 | 0.000 |

*Significant at p<.05 level
**Significant at p<.01 level

Table 4 shows the results of the effect of approval rating and the approval lags on the use of fear related messages (warning status). Approval rating is highly significant with a positive coefficient. Approval rating, having the positive coefficient, goes in the same direction as the warning status level (when one goes up, the other goes up, when one goes down, the other goes down) which does not support hypothesis 1.

The 1 week approval lag has a negative coefficient, yet is insignificant. The 2 week approval lag and the 3 week approval lag both have a negative coefficient and are highly significant. Therefore, as approval goes up, the warning status level goes down and as approval goes down, the warning status level goes up (in the expected direction).
Assuming that the president is a logical player, he will not want to make rash decisions quickly. Therefore, it is only reasonable to assume that the three week approval lag shows better reflection and accuracy than testing the approval rating. When the president sees his approval rating go down and continue going down then he will initiate something (ie. changes in the warning status level) in order to attain more support from the public. Once the approval rating goes up, one cannot assume that the president will raise the warning status level the next day. Therefore, one week passes, perhaps with no change, another week passes and the president’s approval rating continues to decrease without any changes to the warning status level, and then the third week comes with no change in approval rating, thus a difference (change) is made (with the warning status level). Therefore, a change in the level of the warning status is more likely to occur three weeks after the initial decrease of the president’s approval rating. The same can be assumed about periods of high support. Once the president has increasing support, he will not change the warning status level any higher since there is no need to do so. The approval rating may continue to increase and, therefore, a decrease in the warning status level may not be seen until a couple weeks later since changes in people’s opinions do not happen overnight.

In stating this, I have run some logistic dprobit regression equations using the 3 week approval rating as the independent variable (replacing the approval rating variable) to see the results. These results are as follows:
Table 5

LOGISTIC DPROBIT OF PRESIDENTIAL 3RD WEEK APPROVAL RATING LAG ON WARNING STATUS FROM MARCH 12TH, 2002 TO THE 2004 PRESIDENTIAL ELECTION

| | Coefficient | SE | p>|z| |
|-------------------------|-------------|------|-----|
| 3wk approval lag | -0.009534** | 0.001409 | 0.000 |

*Significant at p<.05 level
**Significant at p<.01 level

Table 5 shows the results of the effect of approval rating (using the 3 week approval lag as the independent variable) on the use of fear related messages (warning status). The 3 week approval lag is used here (as well as in tables 6 and 7) due to its accuracy, assuming that the president is a logical player and it will take time before he considers changing the level in the warning status instead of making an immediate change and expecting an immediate result. The 3 week approval lag has a negative coefficient, which is in the expected direction, and is highly significant. Therefore, as approval rating goes up, the warning status level 3 weeks later will go down and while approval rating goes down, the warning status level 3 weeks later will go up. This supports hypothesis 1; that a decrease in the president’s approval ratings or popularity gives him increasing incentive to divert the public’s attention with fear related messages, including the possible crisis of war.

Table 6
In table 6, the results of the effect of approval rating (using the 3 week approval lag as the independent variable) and days to election on the use of fear related messages (warning status) are shown. The 3 week approval lag now has a positive coefficient, which is not in the direction one would expect it to be, and is significant. Thus, approval rating and the warning status are in the same direction. When approval rating goes up, the warning status level 3 weeks later goes up and when approval rating goes down, the warning status level 3 weeks later goes down. Days to election has a negative coefficient, which is the direction one would expect, and is highly significant. Therefore, as days to election decreases (election day is getting closer), the warning status gets higher (changes from Yellow to Orange status level) and as days to election increases (election day is getting farther), the warning status level lowers (changes from Orange to Yellow status level). This would support hypothesis 2; that as the following election day comes closer, the president will have increasing incentive to divert the public’s attention with fear related messages, including the possible crisis of war, in times of low or decreasing support.
Table 7
LOGISTIC DPROBIT OF PRESIDENTIAL 3RD WEEK APPROVAL RATING LAG, DAYS TO ELECTION AND THE INTERACTION VARIABLE ON WARNING STATUS FROM MARCH 12TH, 2002 TO THE 2004 PRESIDENTIAL ELECTION

| | Coefficient | SE | p>|z| |
|-------------------------|-------------|----------|-----|
| 3 wk approval lag | -0.0003457 | 0.0025885| 0.894|
| Days to Election | -0.0019898**| 0.0002486| 0.000|
| Interaction Variable: Appdays | 0.0000221** | 3.61e-06 | 0.000|

*Significant at p<.05 level
**Significant at p<.01 level

Table 7 shows the results of the effect of approval rating (using the 3 week approval lag as the independent variable), days to election, and the interaction variable on the use of fear related messages. When days to election is at zero (election day), there is a negative coefficient for approval rating (as opposed to the positive coefficient when using approval rating as the independent variable instead of the 3 week approval lag as shown in table 3), thus as approval rating goes up, the warning status level 3 weeks later goes down and when approval rating goes down, the warning status level 3 weeks later will go up. Approval rating (3rd week approval lag) is in the direction one would expect it to be in, however, the 3 week approval lag variable is insignificant. When approval rating is zero, there is a negative coefficient for days to election, therefore, it is in the direction that one would expect, and it is highly significant. There is an additional positive effect
of approval rating on warning status as days to election increases (election gets farther away).

In addition to examining the executive administration’s reactions to the president’s approval ratings through the changes in the Homeland Security Advisory System (color-coded alarm) in proximity to the 2004 elections, I also test the effects of the government-issued warnings on presidential approval to see which affects which. In doing so, I ran the data through regression equations.

Table 1A
OLS (ORDINARY LEAST SQUARES) REGRESSION OF WARNING STATUS ON PRESIDENTIAL APPROVAL FROM MARCH 12TH, 2002 TO THE 2004 PRESIDENTIAL ELECTION

| Coefficient | SE | p>|t| |
|-------------|----------|-----|
| Warning Status | -2.276601** | 0.7520762 | 0.003 |

*Significant at p<.05 level
**Significant at p<.01 level

Table 1A examines the effect of warning status on presidential approval. From the results, warning status is highly significant with a negative coefficient. Therefore, when warning status goes up, approval goes down and when warning status goes down, approval goes up (something that one would not expect to see).
Table 2A

OLS (ORDINARY LEAST SQUARES) REGRESSION OF WARNING STATUS AND DAYS TO ELECTION ON PRESIDENTIAL APPROVAL FROM MARCH 12TH, 2002 TO THE 2004 PRESIDENTIAL ELECTION

| | Coefficient | SE | p>|t| |
|----------------------|-------------|------------|-----|
| Warning Status | 4.303397** | 0.4345205 | 0.000 |
| Days to Election | 0.0291889** | 0.0006148 | 0.000 |

*Significant at p<.05 level
**Significant at p<.01 level

In table 2A, the examination of the effect of warning status and days to election on approval rating is shown. From the results, both warning status and days to election are highly significant. Warning status loses its negative sign and now has a positive coefficient. Therefore, warning status and approval rating go in the same direction (something one would expect to see): when warning status goes up, approval rating goes up and when warning status goes down, approval rating goes down. Days to election also has a positive coefficient. Therefore, as days to election increases (election day gets farther away), approval rating goes up and as days to election decreases (election day gets closer), approval rating goes down. This is also something that one would not expect on the evidence that leaders are rational and logical players, who want to stay in office (Richards et al. 1993). Therefore, the president will be aware of his standing with the people as the next election comes closer.
Table 3A

OLS (ORDINARY LEAST SQUARES) REGRESSION OF WARNING STATUS, DAYS TO ELECTION, AND INTERACTION VARIABLE ON PRESIDENTIAL APPROVAL FROM MARCH 12TH, 2002 TO THE 2004 ELECTION

| | Coefficient | SE | p>|t| |
|-----------------------|-------------|------------|--------|
| Warning Status | 1.762728** | 0.2417458 | 0.000 |
| Days to Election | -0.0477159**| 0.0016352 | 0.000 |
| Interaction Variable: Appdays | 0.0010547** | 0.000022 | 0.000 |

*Significant at p<.05 level
**Significant at p<.01 level

Table 3A shows the results of the effect of warning status, days to election and the interaction variable on approval rating. Warning status, days to election, and the interaction variable are all highly significant. When days to election is at zero (election day), there is a positive coefficient for warning status which means that warning status and approval rating are going in the same direction: as warning status goes up, approval rating goes up and as warning status goes down, approval rating goes down. When warning status is zero, there is a negative coefficient for days to election, therefore, it is in the direction one would expect it to be in. The interaction variable, however, is positive. Therefore, there is an additional positive effect of warning status on approval rating as days to election increases (election gets farther away).
| Predictor | Coefficient | SE | p>|t| |
|-----------------------------------|-------------|---------|-----|
| Warning Status | -2.370511* | 1.099389| 0.031|
| 1wk warning status lag | 0.7408775 | 1.424743| 0.603|
| 2wk warning status lag | 0.841894 | 1.42402 | 0.555|
| 3 wk warning status lag | -1.302373 | 1.122238| 0.246|

*Significant at p<.05 level
**Significant at p<.01 level

In table 4A, the examination of the effect of warning status and warning status lags on presidential approval rating is shown. From the results, only warning status is significant with a negative coefficient as in table 1A. Therefore, when warning status goes up, approval rating goes down and when warning status goes down, approval rating goes up (something that is unexpected). All three warning status lags are insignificant. 1 week warning status lag and 2 week warning status lag have positive coefficients while 3 week warning status lag has a negative coefficient (which is in the direction one would expect it to be in).
Table 5A shows the results of the effect of warning status, days to election, the interaction variable, and the warning status lags on presidential approval rating. Days to election, the interaction variable, and 3 week warning status are highly significant. Warning status and 2 week warning status lag are both significant with positive coefficients. The only variable that is insignificant is 1 week warning status lag.
When days to election is at zero (election day), there is a positive coefficient for warning status which means that warning status and approval rating are going in the same direction: as warning status goes up, approval rating goes up and as warning status goes down, approval rating goes down. When warning status is zero, there is a negative coefficient for days to election, therefore, it is in the direction one would expect it to be in. The interaction variable has a positive coefficient, thus, there is an additional positive effect of warning status on approval rating as days to election increases (election gets farther away). 3 week warning status lag also has a positive coefficient.

Table 6A
OLS (ORDINARY LEAST SQUARES) REGRESSION OF 3RD WEEK WARNING STATUS LAG ON PRESIDENTIAL APPROVAL RATING FROM MARCH 12TH, 2002 TO THE 2004 PRESIDENTIAL ELECTION

| Coefficient | SE | p>|t| |
|---------------------|----------|-----|
| 3 wk warning status lag | -5.214857** | 0.7607376 | 0.000 |

*Significant at p<.05 level
**Significant at p<.01 level

Just as the logistic dprobit equations also take into account the 3 week approval lag as the independent variable (for reasons stated), the ordinary least squares regression equations also take into account the accuracy of the 3 week warning status lag as opposed to just the warning status levels. Table 6A examines the effect of the 3rd week warning status lag on approval rating.
From the results, the 3rd week warning status lag is highly significant with a large negative coefficient. Therefore, when warning status goes up, approval rating 3 weeks later will go down and when warning status goes down, approval rating 3 weeks later will go up. This is something that one would not expect to see. When one thinks of diversionary war or the theory or diversion, the outcome or purpose for the diversion is to bring more support for the president, not less. If this were the case, then there would be no point for the diversion because it would prove to be counterproductive and, in fact, harm the president instead of aiding him.

Table 7A

| | Coefficient | SE | p>|t| |
|----------------------|-------------|-----------|-----|
| 3 wk warning status lag | 1.313065** | 0.4586623 | 0.004|
| Days to Election | 0.0289579** | 0.0006489 | 0.000|

*Significant at p<.05 level
**Significant at p<.01 level

Table 7A shows the results of the effect of the 3rd week warning status lag and days to election on approval rating. Both the 3rd week warning status lag and days to election are highly significant and have positive coefficients. Therefore, warning status and approval rating are in the same direction (something that one would expect to see): as warning status goes up, approval rating 3 weeks later will go up and as warning status goes down,
approval rating 3 weeks later will go down. Also as days to election increases (election
day gets farther away), approval rating goes up and as days to election decreases (election
day gets closer), approval rating goes down. This is something one would not expect.

Table 8A
OLS (ORDINARY LEAST SQUARES) REGRESSION OF 3RD WEEK WARNING
STATUS LAG, DAYS TO ELECTION AND THE INTERACTION VARIABLE
ON PRESIDENTIAL APPROVAL RATING FROM MARCH 12TH, 2002 TO THE
2004 PRESIDENTIAL ELECTION

| | Coefficient | SE | p>|t| |
|------------------------------|-------------|-----------|-----|
| 3 wk warning status lag | 0.3902075 | 0.2474252 | 0.115 |
| Days to Election | -0.0483708**| 0.0016266 | 0.000 |
| Interaction Variable: Appdays| 0.0010467** | 0.0000215 | 0.000 |

*Significant at p<.05 level
**Significant at p<.01 level

Table 8A shows the results of the effect of the 3rd week warning status lag, days to
election, and the interaction variable on approval rating. When days to election is at zero
(election day), there is a positive coefficient for warning status which means that warning
status and approval rating are going in the same direction (something that one would
expect): as warning status goes up, approval rating 3 weeks later goes up and as warning
status goes down, approval rating 3 weeks later goes down. However, the 3rd week
warning status lag variable is insignificant. When warning status is zero, there is a
negative coefficient for days to election, therefore, as days to election increases (election
day gets farther away), approval rating goes down and as days to election decreases (election day gets closer), approval rating goes up. The days to election variable is highly significant. The interaction variable is positive and highly significant. Therefore, there is an additional positive effect of warning status on approval rating as days to election increases (election gets farther away).

DISCUSSION

Even though the approval rating variable is very significant and in the predicted direction (negative coefficient) when it is tested by itself on warning status (refer to Table 1), it fails to continue to have the same results when other variables are taken into consideration. In tables 2 and 3, the approval rating variable continues to have very high significance, however, is no longer in the predicted direction (takes on a positive coefficient). In table 2, the days to election variable is being tested along with the approval rating variable. As a result, the days to election variable also has very high significance and has a negative coefficient (in the predicted direction). This is also the case in table 3, when both days to election as well as the interaction variable are being tested along with the approval rating variable. Days to election continues to have a negative coefficient, although now, it is no longer significant. Instead, the interaction variable also has a negative coefficient and is significant. Therefore, there is no strong support for hypothesis 1 which states: A decrease in the president’s approval ratings or popularity gives him increasing incentive to divert the public’s attention with fear related
messages, including the possible crisis of war. The predicted results are only obtained when the variable approval rating is being tested by itself.

The 3rd week approval rating lag variable has a similar, but not exact, pattern. When the 3rd week approval rating lag variable is being tested by itself (refer to Table 5), it has very high significance as well as in the predicted direction (negative coefficient). However, just as with the approval rating variable, when it is tested along with days to election, the 3rd week approval rating lag variable continues to be significant, but loses its negative coefficient. Yet, the days to election variable continues to have high significance and a negative coefficient, as in table 2. In table 7, the 3rd week approval lag variable has a negative coefficient, but is no longer significant. The days to election variable continues to have very high significance as well as a negative coefficient and the interaction variable is also highly significant, but now has a positive coefficient as opposed to a negative coefficient in table 3. Thus, the predicted results are only obtained when the 3rd week approval lag variable is being tested by itself (refer to Table 5) and when it is being tested along with days to election and the interaction variable (refer to Table 7).

It is interesting to note the change in sign of the independent variable (whether it be approval rating such as in table 2 or the 3rd week approval rating lag such as in table 6) when the variable days to election is taken into account. In both cases, both approval rating and the 3rd week approval lag variable lose their negative coefficients they had when being tested by themselves on warning status and take on a positive coefficient when days to election is also being tested. Instead, the days to election variable takes on the negative coefficient in both cases and is very high in significance. This is what one
would expect from the results of the days to election variable because one can assume that the president will like to remain in office and in power, thus, he will be aware of his standing with the people as the next election comes closer (Richards et al. 1993).

In Appendix B, presidential approval rating and the Homeland Security Alarm System warning levels are shown over time. After the high increase in popularity after September 11, 2001, there is a steady almost linear decrease in popularity as days to election draws nearer. One can see that in correlation with the warning status levels, the increase and decrease in presidential approval rating is almost parallel in time as the increase and decrease in the warning status levels. Understandably, the president will have a desire to continue to stay in office, therefore, as the next election day draws near, the president will become more conscious of his standing with the people. This may explain why the warning status level continues to stay at Orange for such a long duration of time in the year 2004, election year. With a negative coefficient for days to election, as the election draws nearer, the warning status will go up and as it gets farther away, the warning status will go down. The results for the days to election variable from tables 2, 3, 6 and 7, show strong support for hypothesis 2, which states: As the following election day comes closer, the president will have increasing incentive to divert the public’s attention with fear related messages, including the possible crisis of war, in times of low or decreasing support.

As for the effect of warning status on presidential approval rating (refer to Tables 1A -3A), the warning status variable has a negative coefficient and is very high in significance when it is tested by itself on approval rating. This is something that one would not expect to see because one does not expect that when warning status goes up,
approval rating goes down and when warning status goes down, approval rating goes up. However, when days to election is also being tested with warning status on presidential approval rating (Table 2A), warning status takes on a positive coefficient (in the direction one would expect) and is still high in significance. The days to election variable also takes on a positive coefficient and has high significance. The positive coefficient for days to election suggests that as election day gets farther away, approval rating goes up and as election day gets closer, approval rating goes down. Assuming that the president is a logical player who wants to stay in office (Richards et al. 1993), one would expect to see approval rating go up as the next election draws near. However, the graph in Appendix A and Appendix B both show the almost linear decrease of presidential approval over time. In table 3A, the days to election as well as the interaction variable are being tested along with warning status on presidential approval. The warning status variable continues to be highly significant with a positive coefficient while days to election takes a negative coefficient (in the direction one would expect) and is high in significance. The interaction variable has a positive coefficient and is also high in significance. Therefore, one can see that warning status has high significance and effects approval rating in the direction one would expect to see when days to election (Table 2A) and days to election and the interaction variable (Table 3A) are also tested with it.

When the 3rd week warning status lag variable is being tested by itself on approval rating (refer to Table 6A), it has a negative coefficient and is also high in significance just as the warning status variable in table 1A. Similar to the results of the warning status variable in table 2A, the 3rd week warning status lag variable also takes on a positive coefficient when being tested along with days to election. Both variables are highly
significant and positive. In table 8A, days to election as well as the interaction variable are being tested along with the 3rd week warning status lag on presidential approval. The 3rd week warning status lag variable continues to have a positive coefficient, but loses its significance. Days to election takes on a negative coefficient and has high significance while the interaction variable takes on a positive coefficient and also has high significance. Therefore, one can see that the 3rd week warning status lag variable has high significance and effects approval rating in the direction one would expect to see only when being tested with days to election (Table 7A).

It is difficult to say what exactly causes the changes in the coefficient signs. It is not clear what makes approval rating change its negative sign (when isolated) and take on the positive sign whenever other variable(s) are present in the probit equations. It is only clear that approval rating is a very significant variable no matter what variation of variables are tested in the probit equations. It is interesting to see the results of the regression equations testing the effect of government-issued warnings on approval rating. It is clear that warning status is also a significant variable, aside from the exceptions.

CONCLUSION

An understanding of the political behavior and use of diversionary war, such as the use of fear related messages by the administration on the basis of public support or approval for the president, is important for investigating the value and credibility of the
president’s tactics and strategy for the public. It is obvious that approval rating is a very significant factor which affects the warning status, although, it may not do so in the manner that one would suspect. When the variable itself is isolated, the negative coefficient proves that the affect is what one would expect it to be. However, in the presence of other variables, such as the days to election variable or the interaction variable, the negative becomes a positive coefficient and days to election or the interaction variable, appdays, has a negative coefficient showing that the president is conscious of the approaching election.

In addition to examining the executive administration’s reactions to the president’s approval ratings through the changes in the Homeland Security Advisory System (color-coded alarm) in proximity to the 2004 elections, I also tested the effects of the government-issued warnings on presidential approval. As a result, the government-issued warnings were found to have a very significant effect on presidential approval, although, not always in the direction one would expect to find. However, the results from both examinations are very high in significance and closely related that it is hard to determine which comes first: approval rating or the government-issued warnings.

Possible flaws in my proposed study include the relative time and amount of data that may be collected and used in this study. Since the Department of Homeland Security just recently began to use the HSAS (Homeland Security Advisory System) following the events of 9-11, the amount of data on this subject is relatively limited in comparison to other studies conducted. Also, some outside factors may have also affected the warning status level that were not/could not be tested in this examination. Some examples of these factors are the public viewing of terrorists’ demands through media, the bombings
that occurred throughout Europe and the Middle East, the killings and warnings from the terrorists, and so forth. These situations and events that occurred could have sparked fear/anger/despair into the people, thus creating a rally around the flag effect. Otherwise, the loss of/ threat of losing a loved one could bring about a patriotic feeling within the people and, therefore, more support for the president. There are many factors that could affect approval rating. The timing of these events may also have an affect on the changes in warning status that were not taken into account.

Also, for a possible future topic to be examined, one may examine the effect of partisan support in Congress for the president and its effect on the presidential or administration’s use of diversionary tactics including fear related messages. It would have been nice to examine this effect as well, however, since sufficient data has not been provided, this topic must wait. I hope in doing so, one may also study the effect of having a divided government (the president being from one party and the majority power in Congress being of a different party) as opposed to not having one. I would expect that partisan support within Congress would have a strong effect on the use of fear related messages by the president’s administration (Meernik and Waterman, 1996). This would be expected to be true specifically when the President’s support begins to decline within his own party. However, an examination of this will allow us to study whether or not the partisan support in Congress is more effective when the president knows it is coming from the same party or not and how this influences the use of the fear related messages.

Hopefully, as more studies are conducted on these issues, we will have a better understanding on the relationship between the president’s approval ratings and the use of
fear related messages. Perhaps, it will become clearer in the near future which comes first.