Can the mind change the world?

NED BLOCK

Hilary Putnam originated the idea that mental states are computational states. At first (Putnam, 1960), his view was that although mental states are not *identical* with computational states (or "logical states," as he then called them), there are useful analogies between them. Later (Putnam, 1967), he argued in favor of the identity on the grounds that it was more plausible to suppose mental states are functional states (as he then called them) than that they are behavioral or physical states. This doctrine — functionalism — has dominated the philosophy of mind for over twenty years. Shortly after proposing functionalism, Putnam rejected it again (1973), and he has maintained this position ever since (Putnam, 1988).

Putnam was my teacher during both my undergraduate and graduate days, and I fear I have absorbed his ambivalence toward functionalism. My teacher has had a habit of changing his mind, but never has he done so within a single essay, and so in this chapter I have surpassed him. My chapter starts out as an argument for functionalism, but it ends up suggesting an argument against it. The issue is whether we can avoid epiphenomenalism, which I here understand as the doctrine that what we think or want has no causal relevance to what we do. I propose functionalism as a way of warding off arguments for epiphenomenalism, but then I argue that functionalism may bring epiphenomenalism in its wake.

The orientation of the chapter is toward the sciences of the mind, and their relation to intentional content, that is, what is shared by the

I am grateful for support to the American Council of Learned Societies and to the National Science Foundation, grant number DIR88 12559. I am also grateful to Jerry Fodor, Paul Horwich, Frank Jackson, Gabriel Segal, and Marianne Talbot for their comments on an earlier draft; to Thomas Nagel, who was the commentator on the paper on which this chapter is based at a conference at Columbia University in December 1988; to Simon Blackburn, who was the commentator on the paper at Oxford in February 1989; to Martin Davies, Dorothy Edgington, and Barry Smith for discussion of the issues while I was at Birkbeck College, University of London; and to the audiences at a number of philosophy colloquia.
belief that grass grows and the desire that grass grows, the that grass grows that both states are directed toward. The question at hand is whether the sciences of the mind preclude intentional content from causal relevance to behavior. One argument that the intentional contents of our beliefs, thoughts, and the like have no effects on our behavior could be put this way: The processors in the head are not sensitive to content, so how could content have any effect on the outputs or changes of state of the system of processors? And if content can't affect the operation of this system of processors, how could it play any role in producing behavior? This argument seems formidable whether one thinks of the processors as neural devices reacting to neural inputs or, instead, from the cognitive science point of view, as computational devices processing representations. In this chapter, I confine myself to the problem as it arises in the cognitive science approach that is dominated by the computer model of the mind. I assume a very specific picture of cognitive science and its relation to the commonsense conception of intentional content, namely, the view according to which there is an internal system of representation from whose meanings our intentional contents derive (Fodor, 1975; Pylyshyn, 1984). One of my reasons for couching the discussion in terms of this view is that although those who adopt this view are motivated by the aim of showing how our commonsense beliefs about content (including our belief in content's causal efficacy) are vindicated by the computer model of the mind, the problem of the epiphenomenalism of content arises within this view in an extremely simple and straightforward (and poignant) way. The viewpoint assumed throughout the chapter is that of a supporter of the computer model in cognitive science who also would like to believe that the contents of our thoughts are indeed causally relevant to what we do.

The problem I have in mind might be put in terms of The Paradox of the Causal Efficacy of Content, namely, that the following claims all seem to be true, yet incompatible:

1. The intentional content of a thought (or other intentional state) is causally relevant to its behavioral (and other) effects.
2. Intentional content reduces to meanings of internal representations.
3. Internal processors are sensitive to the "syntactic forms" of internal representations, not their meanings.

The first claim is meant to be part of the commonsense view of the mind. The third is plausibly taken to be a basic claim of the computer model of the mind, and the second is a useful and plausible way of thinking how commonsense psychology meshes with the computer model. The question is: Does this premise stand?
model. This second claim is by far the most controversial, but I won't be questioning it here. My reasons are that I think it is true, that I see no useful purpose to dividing meaning and content in this context, and that I think the best bets for resolving the paradox are to question the third premise and whether the reasoning that leads to the paradox is right.

The reasoning behind the paradox goes something like this: Any Turing machine can be constructed from simple primitive processors such as and gates, or gates, and the like. (See Minsky, 1967.) Gates are sensitive to the syntactic forms of representations, not their meanings. But if the meaning of a representation cannot influence the behavior of a gate, how could it influence the behavior of a computer—a system of gates? Since intentional content reduces to meanings of internal representations, and since meanings of internal representations cannot influence behavior, content cannot influence behavior either. The reasoning assumes that at least as far as our thinking is concerned, we are computers. This idea—which is simply the computer model of the mind (our cognitive mind, that is)—may be wrong, but I will be assuming it to explore where it leads.

My plan for the chapter involves

I. Explaining each premise
II. Examining and rejecting a putative solution based on a nomological conception of causal relevance
III. Suggesting a solution based on a functionalist conception of content and meaning and a counterfactual theory of causal relevance
IV. Discussing a problem with the proposed solution, one that suggests that functionalism actually breeds epiphenomenalism

A subtheme of the chapter is that a nomological theory of causal relevance (a theory that explains causal relevance in terms of the notion of a law of nature) has more of a problem with epiphenomenalism than a counterfactual approach.

1. The premises

The first premise uses the notion of a causally relevant property. Some properties of a cause are relevant to the production of an effect, and some are not. Hurricane Eliza broke my window. Eliza's wind speed and geographical path are causally relevant to the breaking, but its name and the location of its records in the United States Weather Bureau are not. According to the first premise, if my belief that the United States is a dangerous place causes me to leave the country, the content of the belief is causally relevant to the behavior; a property that
is not causally relevant to the behavior is the last letter of the name of the city in which the belief was formed.

Note that the point is not that beliefs, thoughts, desires, and the like (mental states or events that have content) are causes, for example, of behavior. (I assume that they are.) Rather, the point is that when mental events have effects, they typically have those effects (rather than different effects) because the mental events have the contents that they have, rather than some other contents. Typically, if the beliefs, thoughts, and so forth, had had contents that were appropriately different, they would have had quite different effects. For example, had I believed that everywhere except the United States is a dangerous place, then I wouldn't have left the country.

My metaphysical stance in this chapter is one in which mental events are the causes of behavior, and their contents are properties of those events that may or may not be causally relevant to the events' effects. I shall say that property \(P \) of event \(c \) is causally relevant to effect \(e \) and that \(c \) causes \(e \) in virtue of \(P \) more or less interchangeably. Also, I shall put the claim that content is causally relevant to something by saying that content is causally efficacious, and not epiphenomenal. Of course, my use of 'epiphenomenalism' is importantly different from the traditional one. I'm not raising any possibility of content being a property of a distinct mental substance, events in which are caused by events in the brain even though events in the mental substance never cause anything. And epiphenomenalism in my sense does not entail that content is itself caused by an underlying physical state that also causes behavior. The reason I use this old word ('epiphenomenalism') for this newer problem is that the problem I raise is the modern heir of the old problem.

The second premise – that content reduces to meanings of internal representations (symbols in the head) – is much more tendentious than the first, and is certainly not part of commonsense wisdom about the mind. But it is a straightforward way of making commonsense realism about content compatible with the view that the machinery of the mind is one of computations on internal representations. According to the computer model, the mind (or its cognitive aspect) can be thought of as a system of processors that take representations as inputs, transform them in various ways, and then send them to other processors, as in computers. One can think of the representations in such a system as being in certain computational relations to the whole system. These computational relations are determined by the ways the system would treat the representation given various different states of its component processors. A sample computational relation is that of storing a representation.
Can the mind change the world?

Figure 1

Of course, computers that you can buy don't currently think or remember. But if computers can be programmed to think, or if we are computers, this story can be extended to thinking things. Thus, remembering might consist in the storing of a representation in such a way that it can later be accessed. Remembering that grass grows would be storing a representation that means that grass grows. This is the doctrine of reduction of content to meaning stated in the second premise. More generally, as is argued in Fodor (1975), to have the thought that \(p \) is to be in a certain computational relation to an internal representation that means that \(p \), and likewise for other propositional attitudes. The slogan — and it is only a slogan — is that thinking that grass grows is having 'Grass grows' in the thought box in the head.

Talk of the thought box in the head is (thinly) disguised functional talk. The sentences that are in the thought box share a computational situation, a role within the system — in other words, a function within the system. This functional theory of what a thought is (and how it differs from a desire) should be firmly distinguished from other functionalisms to be mentioned in this paper, especially the much more controversial idea that the meaning of a representation is itself functional.

The third premise is that internal processors are sensitive to the syntactic form of the internal representations that they process, not their meanings. Consider the \textit{and} gate of Figure 1. What makes it an \textit{and} gate is that it emits a '1' if and only if both inputs are '1's; all other inputs yield a '0' as output. The \textit{and} gate

I. Is not sensitive to
II. Does not react to
III. Does not detect
whether the '1's' represent truth or the number 1 or nothing at all. Rather, the and gate is sensitive to, reacts to, and detects only whether the inputs are both '1's' or not. Thus it is sensitive to the syntax, not the meaning of its inputs, and likewise for the primitive processors postulated by cognitive science accounts of the mind. (The primitive processors of a system are the ones for which there is no explanation within cognitive science of how they work; their operation can be explained only in terms of a lower level branch of science, physiology, in the case of human primitive processors, electronics in the case of standard computer primitives.)

Note that the sense of 'syntax' I am using here (somewhat misleadingly) means form class. '1' and '0' are different syntactic objects in this sense. It is important to be aware that syntax in this sense of the term is another functional notion. English orthography is also functional, although this may be obscured by the rigidification of function by convention. For example, you will have little trouble figuring out what 1%tt%r of th% alphab%t is th% on% to which th% unusual symbol in this s%nt%nc% should b% tr%at%d as functionally %quival%nt.

Consider an input-output system whose input and output registers are bi-stable, and take on values of either 7 volts or 4 volts. Suppose that if both input registers are at 4 volts, then the output is 4 volts, and every other input yields the 7-volt output. Then (1) the system is an and gate, (2) the 4-volt value counts as a '1' for this and gate, and the 7-volt value counts as a '0'. A differently constructed and gate might be one for which 7 volts counts as a '1'. '1' is conventionally assigned to states of computer registers using this type of consideration. The functional roles of the bi-stable states of registers simultaneously determine our identifications of the devices in the system (e.g., as adders and gates) and our identifications of the states of the registers as symbols. So it is having a certain functional role that makes a state satisfy a syntactic description, in the sense of syntax used here.

Note that it would be a mistake to say that 4 volts in the first gate mentioned has the same meaning as 7-volts in the second gate. We don't know what the meanings of the '1's' in either gate are until we see other aspects of their function. These '1's' could be used to mean one, or true, or green; the input-output function does not choose among these and other possibilities. The aspects of function relevant to syntax are different from, though overlapping with, the aspects of function relevant to meaning.

In the next section, I will explain the picture common in cognitive science of sensible or "rational" relations among contents deriving from the correlation between rational relations among contents on the one hand, and on the other cognitive potential shall see "going p worries a section is to syntax solution.

2. The title example, handle o only know represent decimal following

| 0 + 0 | 0 + 0 |
| 1 + 0 | 0 + 1 |
| 1 + 1 |

The first last is true

Here is '0' in this gate. The inputs at illustrated
Can the mind change the world?

2. The brain as a syntactic engine driving a semantic engine

The title you just read can be understood by attention to a simple example, a common type of computer adder stripped down so as to handle only one-digit addenda. To understand the example, you need only know the following simple facts about binary notation: 0 and 1 are represented alike in binary and decimal, but the binary translation of decimal ‘2’ is ‘10’. The adder pictured in Figure 2 will solve the following four problems:

\[
\begin{align*}
0 + 0 &= 0 \\
1 + 0 &= 1 \\
0 + 1 &= 1 \\
1 + 1 &= 10
\end{align*}
\]

The first three equations are true in both binary and decimal, but the last is true only in binary.

Here is how the adder works. The two digits to be added, a ‘1’ and a ‘0’ in this case, are connected both to an and gate and an exclusive-or gate. The latter gate is a “difference detector,” i.e., it outputs a ‘1’ if its inputs are different, and a ‘0’ if they are the same. In the case illustrated in Figure 2, the exclusive-or gate sees a difference, and so it
outputs a '1' to the rightmost box of the answer register. The and gate outputs a '0', and so the device computes the answer. The exclusive-or gate does the "work" in the first three problems, and is needed only for carrying, which comes in only in the last problem as illustrated in Figure 3. Both inputs are '1's', and so the and gate outputs a '1' to the leftmost box of the answer register. The other gate makes the rightmost box a '0', and so we have the answer.

Seeing the adder as a syntactic engine driving a semantic engine requires noting two functions: one maps numbers onto other numbers, and the other maps symbols onto other symbols. The latter function is concerned with the numerals as symbols — without attention to their meanings. Here is the symbol function:

- '0', '0' → '0'
- '0', '1' → '1'
- '1', '0' → '1'
- '1', '1' → '10'

This symbol function is mirrored by a function that maps the numbers represented by the numerals on the left onto the numbers represented by the numerals on the right. This function will thus map numbers onto numbers. We can speak of this function that maps numbers onto numbers as the semantic function, since it is concerned with the meanings of the symbols, not the symbols themselves. (It is important not to confuse the notion of a semantic function in this sense with a function that maps symbols onto what they refer to; I shall discuss this latter function shortly.) Here is the semantic function (in decimal notation — you must choose some notation to express any function):

- 0, 0 → 0
- 0, 1 → 1
- 1, 0 → 1
- 1, 1 → 2

The first maps the onto the
The key two funct
I. A
II. Sy
III. Us

The symbol meanings useful re function described these two usual sen how it is numbers. semantic of symbol The idea nature ha tions and of the sy "syntactic and 1's the meaning - process their for drive our

Now t' driving a intention our cogni the synt causal we

In this s making th
The first function maps symbols onto symbols; the second function maps the numbers referred to by the arguments of the first function onto the numbers referred to by the values of the first function.

The key idea behind the adder is that of a correlation between these two functions. The designer has joined together

I. A meaningful notation (binary notation)
II. Symbolic manipulations in that notation
III. Useful relations among the meanings of the symbols

The symbolic manipulations correspond to useful relations among the meanings of the symbols—namely, the relations of addition. The useful relations among the meanings are captured by the semantic function above, and the corresponding symbolic relations are the ones described in the symbolic function above. It is the correlation between these two functions (which establishes a semantic function in the more usual sense of a function from words to their referents) that explains how it is that a device that manipulates symbols manages to add numbers. Now the idea of the brain as a syntactic engine driving a semantic engine is just a generalization of this picture to a wider class of symbolic activities, namely, the symbolic activities of human thought. The idea is that we have symbolic structures in our brains, and that nature has seen to it that there are correlations between causal interactions among these structures and sensible relations among the meanings of the symbolic structures. The primitive processors “know” only the “syntactic” form of the symbols they process (e.g., what strings of 0’s and 1’s they see), and not what the symbols mean. Nonetheless, these meaning-blind primitive processors control processes that “make sense” — processes of decision, problem solving, and the like. In short, there is a correlation between the meanings of our internal representations and their forms. And this explains how it is that our syntactic engine can drive our semantic engine.

Now the picture just sketched of the brain as a syntactic engine driving a semantic engine reveals how it is that a mechanistic theory of intentionality can invite the charge of epiphenomenalism. It seems that our cognitive processes exploit a correlation between the semantic and the syntactic. The syntactic properties of the representations do the causal work, and the semantic properties come along for the ride.

3. The appeal to laws

In this section, I will examine a putative solution, that is, a way of making the cognitive science picture (premises 2 and 3) compatible with
the causal relevance of content (to the behavioral and other effects of contentful mental states, of course - I’ll be leaving the prepositional phrase out often, just speaking, elliptically, of the causal relevance of content). Actually, I shall start by briefly mentioning a reductionist proposal just to set it to one side. If content properties could be identified with, say, neurophysiological properties, then there would be no opening for epiphenomenalism. If content properties are simply identical to neurophysiological properties, then the causal efficacy of the neural would guarantee the causal efficacy of content. Whatever the merits of physiological reductionism, it is not available to the cognitive science point of view assumed here. According to cognitive science, the essence of the mental is computational, and any computational state is “multiply realizable” by physiological or electronic states that are not identical with one another, and so content cannot be identified with any one of them.

Note that in rejecting this putative solution, I am not rejecting a “physicalistic” point of view. If all the nomologically possible things that can have computational properties are physical things, then the computational point of view, embracing this idea, is itself physicalistic. Even if the computational properties that characterize mentality are in this sense physical, that does not make them physiological or electronic (or syntactic, for that matter), and so physicalism in this sense does not lead to any suggestion that processors in the head can detect content or meaning.

There is another putative solution to which I will devote more attention, one that appeals to a nomological view of causation. The idea is that there are non-strict psychological laws involving content, and that law - even non-strict law - makes for causal relevance. Fodor (1987b, forthcoming) argues that intentional laws provide non-strict intentional sufficient conditions for behavior, and that is what makes content causally relevant to behavior. It will pay us to examine a simple version of this nomist perspective: F is causally relevant to an effect e if the instantiation of F is nomologically sufficient for e - even if the nomological sufficiency holds only ceteris paribus.

The trouble with this simple version of the nomist approach is familiar: there can be correlation without causation - even nomological correlation of F with G without a causal relevance relation between F and G. And nomological correlation can involve nomological sufficiency. Suppose C (for cause) is nomologically sufficient for and uncontroversially causally relevant to E (for effect). Suppose X is nomologically correlated with C because X and C share a causal source, and so X is not causally relevant to C. Then, X is nomologically sufficient for E without it being the cause.

Note that in rejecting this putative solution, I am not rejecting a “physicalistic” point of view. If all the nomologically possible things that can have computational properties are physical things, then the computational point of view, embracing this idea, is itself physicalistic. Even if the computational properties that characterize mentality are in this sense physical, that does not make them physiological or electronic (or syntactic, for that matter), and so physicalism in this sense does not lead to any suggestion that processors in the head can detect content or meaning.

There is another putative solution to which I will devote more attention, one that appeals to a nomological view of causation. The idea is that there are non-strict psychological laws involving content, and that law - even non-strict law - makes for causal relevance. Fodor (1987b, forthcoming) argues that intentional laws provide non-strict intentional sufficient conditions for behavior, and that is what makes content causally relevant to behavior. It will pay us to examine a simple version of this nomist perspective: F is causally relevant to an effect e if the instantiation of F is nomologically sufficient for e - even if the nomological sufficiency holds only ceteris paribus.

The trouble with this simple version of the nomist approach is familiar: there can be correlation without causation - even nomological correlation of F with G without a causal relevance relation between F and G. And nomological correlation can involve nomological sufficiency. Suppose C (for cause) is nomologically sufficient for and uncontroversially causally relevant to E (for effect). Suppose X is nomologically correlated with C because X and C share a causal source, and so X is not causally relevant to C. Then, X is nomologically sufficient for E without it being the cause.

Note that in rejecting this putative solution, I am not rejecting a “physicalistic” point of view. If all the nomologically possible things that can have computational properties are physical things, then the computational point of view, embracing this idea, is itself physicalistic. Even if the computational properties that characterize mentality are in this sense physical, that does not make them physiological or electronic (or syntactic, for that matter), and so physicalism in this sense does not lead to any suggestion that processors in the head can detect content or meaning.

There is another putative solution to which I will devote more attention, one that appeals to a nomological view of causation. The idea is that there are non-strict psychological laws involving content, and that law - even non-strict law - makes for causal relevance. Fodor (1987b, forthcoming) argues that intentional laws provide non-strict intentional sufficient conditions for behavior, and that is what makes content causally relevant to behavior. It will pay us to examine a simple version of this nomist perspective: F is causally relevant to an effect e if the instantiation of F is nomologically sufficient for e - even if the nomological sufficiency holds only ceteris paribus.

The trouble with this simple version of the nomist approach is familiar: there can be correlation without causation - even nomological correlation of F with G without a causal relevance relation between F and G. And nomological correlation can involve nomological sufficiency. Suppose C (for cause) is nomologically sufficient for and uncontroversially causally relevant to E (for effect). Suppose X is nomologically correlated with C because X and C share a causal source, and so X is not causally relevant to C. Then, X is nomologically sufficient for E without it being the cause.

Note that in rejecting this putative solution, I am not rejecting a “physicalistic” point of view. If all the nomologically possible things that can have computational properties are physical things, then the computational point of view, embracing this idea, is itself physicalistic. Even if the computational properties that characterize mentality are in this sense physical, that does not make them physiological or electronic (or syntactic, for that matter), and so physicalism in this sense does not lead to any suggestion that processors in the head can detect content or meaning.

There is another putative solution to which I will devote more attention, one that appeals to a nomological view of causation. The idea is that there are non-strict psychological laws involving content, and that law - even non-strict law - makes for causal relevance. Fodor (1987b, forthcoming) argues that intentional laws provide non-strict intentional sufficient conditions for behavior, and that is what makes content causally relevant to behavior. It will pay us to examine a simple version of this nomist perspective: F is causally relevant to an effect e if the instantiation of F is nomologically sufficient for e - even if the nomological sufficiency holds only ceteris paribus.
r effects of positional relevance of reductionist s could be would be are simply efficacy of whatever the cognitive science, the mental state is that are not rlected with any rejecting a sible things is, then the physicalistic reality are in or electronic case does not content or evote more on. The idea content, and unces. Fodor s non-strict what makes the a simple in effect e if even if the approach is in nomological between logical sufficiency and unconscious nomological source, and so deficit for E without being causally relevant to E. See Figure 4, which pictures this “fork” case.

Here is an example. Consider a setup in which a metal rod connects a fire to a bomb. So long as the thermal conductivity of the rod is low, not enough heat is transferred from the fire to the bomb to cause an explosion. But if the thermal conductivity of the rod is increased enough (say, by altering its composition), then the heat from the fire will explode the bomb.⁴

Now there is a law – the Wiedemann-Franz Law – linking thermal and electrical conductivity under normal conditions. (The same free electrons carry both charge and heat.) Hence for this setup, rising electrical conductivity, together with other things being equal, is sufficient for an explosion. Hence by the nomist criterion, rising electrical conductivity is causally relevant to the explosion.

I take it that to the extent that we have a pretheoretical grasp on the notion of causal relevance, this consequence of the simple version of the nomist criterion is simply wrong. The electrical conductivity increase does not cause the explosion; certainly it does not cause the explosion in virtue of being a rise in electrical conductivity. Rather, the rising electrical conductivity is an inactive concomitant of the causally relevant rising thermal conductivity. It is the rising thermal conductivity that allows more heat to be conducted to the bomb, causing the bomb to explode.

The obvious nomist response would be to reformulate the thesis to avoid these fork cases. The idea would be to formulate what the fork cases have in common that distinguishes them from genuine causal cases, and use this result to produce a definition of causal relevance in terms of “non-fork” nomological sufficiency. I think this is a promising way to go about characterizing causal relevance, but I have two doubts about whether the resulting nomist conception of causal relevance will be one that saves us from epiphenomenalism.
First, recall that the problem of epiphenomenalism arose to begin with because the cognitive science point of view held that nature had produced a correlation between syntax and semantics, only the former being directly causally related to behavior. What reason is there to think that an independently motivated definition of “non-fork” nomological sufficiency would count semantics as any more causally relevant to behavior than rising electrical conductivity is to the explosion in the example considered earlier? Indeed, the correlation between semantics and syntax via a common cause is a good example of a fork.

Second, the issue of the epiphenomenalism of the semantic may simply resurface in a different form in an independently motivated account of causal relevance in terms of nomologicity. Horwich (1987, Chapter 8) frames a definition of causation in terms of the idea of a basic law. A cause is linked to its effects by chains of direct nomological determination, and direct nomological determination is determination via basic law. “A direct cause of some effect is an essential part of an antecedent condition whose intrinsic description entails, via basic laws of nature, that the effect will occur” (ibid.). Cause c causes effect e if there is a set of events, e_1, \ldots, e_n, linked by basic laws, and if $c = e_1$, and $e = e_n$. The account concerns event causation, not the causal relevance of properties. But assuming that it could be supplemented to form an account of causal relevance using the notion of a basic law, we can see that although it shifts the terms of the discussion of epiphenomenalism, it does not solve the problem. Is content epiphenomenal? That depends on whether the laws that determine behavior in terms of content are basic. But one’s decisions on whether these laws are basic — and, indeed, what basicness is — will be (and should be) conditioned by one’s decisions on what is causally relevant to what.

Of course the fact that the nomist conception of causal relevance will not solve this problem all by itself is not a reason to reject the nomist conception.

Fodor (forthcoming) says that if there is a causal law that F instantiations cause G instantiations (ceteris paribus), then F is causally relevant to the G instantiations that are caused by F instantiations. The appeal to causation in this sufficient condition is harmless for Fodor’s purposes, but not for mine. For how are we supposed to know whether the laws that relate content to behavior are causal laws? For example, consider the (very low quality) law to the effect that instantiations of wanting G and believing that A is required for G cause instantiations of A, ceteris paribus. To know whether the content properties are causally relevant to the action, we must know if the law is causal. But if Fodor’s sufficient condition is all we have to work with, the issue of whether the law is causal no progress.

We have just of nomologicalism. I know relevance. In section, I wi - the Cours e is con way of avoid.

Suppose v a ‘1’, ‘0’ pa a ‘0’ output, just the sam and ‘0’ had these sym been using primitive pr object (say, an another strin caused the s philosophica the meaning conclusion is nal, so are th.

I want to c eptions are the for epiphen.

The funct thinking, pla bines with a between imp arise from th functionalis body, others these imping ists take fun partly intern
arose to begin that nature had only the former on is there to n-fork" nomo-
usally relevant explosion in the seen semantics
ork.
semantic may
antly motivated lorwich (1987,
the idea of a
omological determination
ial part of an via basic laws ses
ef e if
if c = e_1 , and usual relevance ed to form an w, we can see
omenalism,
That depends if content are
asic - and, conditioned by
relevance will
ct the nomist
at F instantaneous relevant
s. The appeal
Fodor's pur-
whether the
For example, tantiations of tantiations of s are causally
But if Fodor's
whether the
law is causal just is the epiphenomenalism issue we are discussing, so
no progress has been made.

4. A proposal

We have just been considering an approach to causal relevance in terms
of nomologicity, and we have not succeeded in avoiding epiphenomenalism. I know of only one other remotely promising approach to causal
relevance, namely, the approach in terms of counterfactuals. In this
section, I will first give a version of the argument for epiphenomenalism
- the Counterfactual Argument I will call it - in which causal relevance
is construed counterfactually. Then I will suggest a functionalist way of avoiding the conclusion.

Suppose we have a computational device (say, an and gate) to which
a ('1', '0') pair - representing the numbers 1 and 0 - is input, yielding
a '0' output, representing 0. Now the ('1', '0') input pair would have had
just the same effect, viz., the production of '0' as output, even if the '1'
and '0' had represented truth and falsity instead of 1 and 0, or even if
these symbols had represented black and white, or even if we hadn't
been using them to represent anything at all. And what holds for a
primitive processor also holds for any system of them. If a syntactic
object (say, a string of '0's and '1's) is input to the whole system, and
another string of zeroes and ones is output, the input string would have
caused the same output string no matter what it had meant. In common
philosophical parlance, the syntax of the representation "screens off"
the meaning from having any causal relevance to the output. The
conclusion is that since meanings of representations are epiphenome-
nal, so are the contents of the mental states that they ground.

I want to offer the claim that if the meanings of internal representa-
tions are their "functional roles," then the Counterfactual Argument
for epiphenomenalism can be vanquished.

The functional role of a representation is its causal role in reasoning,
thinking, planning, and in general in the way the representation com-
bines with and interacts with other representations so as to mediate
between inputs and outputs. The functional roles of representations
arise from the ways processors manipulate their syntactic forms. Some
functionalists take inputs to be impingements on the surfaces of the
body, others take inputs to be the things in the world that produce
these impingements (and likewise for outputs). Thus some functionalists take functional role to be internal, whereas others take it to be
partly internal, partly external. My use of the functionalist perspective
requires no commitment on this matter. More specifically, nothing I say here should be construed as an endorsement of "narrow content."

A functional role theory of meaning is a theory of what meaning is that yields an account of what it is about representations that gives them their meanings, not a "semantics" in the sense of a theory of particular constructions in particular languages. Thus, it would not be the job of a functional role theory of meaning to explain why it is that 'The temperature is 70°', and 'The temperature is rising' do not entail '70° is rising'. Theories of the sort that would deal with such questions often address themselves to what meaning is, but they do not yield an account of what gives representations their meanings. Usually, for their purposes any "surrogate" of meaning -- anything that acts like meaning in the way that set theoretic entities "act like" numbers -- will do. (See Block, 1986, 1987, for more on this distinction.) A functional role theory can be thought of as a "use" theory of meaning, where the uses are at least partly inside the head.

One motivation for such an account can perhaps be seen more clearly if one reflects on a case in which one learns the meanings of words without anything approximating an eliminative definition for them. Consider, for example, the learning of a new scientific theory with its new theoretical terms, e.g., 'force', 'mass', 'momentum', 'energy'. These new terms are not definable in everyday language (or anything like an "observation language"), though they are definable in terms of one another. The student learns these terms by coming to understand how to use them in thought, in experiment and observation, and in solving problems on quizzes. If meaning is functional role, then it is easy to see why learning new terms is acquiring their use. It is a plus for a theory of what meaning is if it also tells us what it is to know and learn meanings.

That is all I will say here to motivate the functional role account. Now on to the Counterfactual Argument.

You will recall that the Counterfactual Argument said that it appeared that a given syntactic object would have caused the same output even if it had meant something quite different from what it actually means or even if it had meant nothing at all, so the syntactic form of a representation screens off its meaning from having any causal relevance.5

Suppose, for example, that the sentence 'There is danger coming this way' is in the "belief box" (with its normal meaning), causing one to flee. According to the Counterfactual Argument, the sentence would have caused the fleeing even if it had meant that my long-lost friend approaches, or that Empedocles leaped. But if functional role semantics is correct, then it is not at all guaranteed that 'There is danger coming the friend app' regardless of sentence meaning. The friend app was fleeing us, hence it's meaning of "fleeing" would have been different had the friend app been different from the friend app.

In sum, the counterfactual argument would be different if the friend app were different from the friend app.

In terms of the counterfactual argument, are the new terms definable in everyday language? Are the new terms usable in thought, in experiment and observation, and in solving problems on quizzes? If meaning is functional role, then it is easy to see why learning new terms is acquiring their use. It is a plus for a theory of what meaning is if it also tells us what it is to know and learn meanings.

That is all I will say here to motivate the functional role account. Now on to the Counterfactual Argument.

You will recall that the Counterfactual Argument said that it appeared that a given syntactic object would have caused the same output even if it had meant something quite different from what it actually means or even if it had meant nothing at all, so the syntactic form of a representation screens off its meaning from having any causal relevance.5

Suppose, for example, that the sentence 'There is danger coming this way' is in the "belief box" (with its normal meaning), causing one to flee. According to the Counterfactual Argument, the sentence would have caused the fleeing even if it had meant that my long-lost friend approaches, or that Empedocles leaped. But if functional role semantics is correct, then it is not at all guaranteed that 'There is danger coming the friend app' regardless of sentence meaning. The friend app was fleeing us, hence it's meaning of "fleeing" would have been different had the friend app been different from the friend app.

In sum, the counterfactual argument would be different if the friend app were different from the friend app.

In terms of the counterfactual argument, are the new terms definable in everyday language? Are the new terms usable in thought, in experiment and observation, and in solving problems on quizzes? If meaning is functional role, then it is easy to see why learning new terms is acquiring their use. It is a plus for a theory of what meaning is if it also tells us what it is to know and learn meanings.

That is all I will say here to motivate the functional role account. Now on to the Counterfactual Argument.

You will recall that the Counterfactual Argument said that it appeared that a given syntactic object would have caused the same output even if it had meant something quite different from what it actually means or even if it had meant nothing at all, so the syntactic form of a representation screens off its meaning from having any causal relevance.5

Suppose, for example, that the sentence 'There is danger coming this way' is in the "belief box" (with its normal meaning), causing one to flee. According to the Counterfactual Argument, the sentence would have caused the fleeing even if it had meant that my long-lost friend approaches, or that Empedocles leaped. But if functional role semantics is correct, then it is not at all guaranteed that 'There is danger coming the friend app' regardless of sentence meaning. The friend app was fleeing us, hence it's meaning of "fleeing" would have been different had the friend app been different from the friend app.

In sum, the counterfactual argument would be different if the friend app were different from the friend app.

In terms of the counterfactual argument, are the new terms definable in everyday language? Are the new terms usable in thought, in experiment and observation, and in solving problems on quizzes? If meaning is functional role, then it is easy to see why learning new terms is acquiring their use. It is a plus for a theory of what meaning is if it also tells us what it is to know and learn meanings.

That is all I will say here to motivate the functional role account.
Can the mind change the world?

coming this way' would have caused fleeing even if it had meant that Empedocles leaped. For if it had had a different meaning, or no meaning at all, its functional role would have been different, and since functional role is causal role, abstractly construed, a difference in functional role typically will include a difference in behavioral effects.

Perhaps the functional role of 'There is danger coming this way' includes an inference to sentences such as 'It would be best not to be here when the danger arrives' (with its normal functional role and hence its normal meaning), and perhaps this inference is part of the causal chain that led to fleeing. Then if the token of 'There is danger coming this way' that was in the belief box had meant that a long-lost friend approaches, the inference would not have taken place, and the fleeing would not have occurred. We would have approach instead of avoidance, and friendly words instead of fear. If the meaning of the sentence in the belief box had been different, its effects would have been different and required different semantic descriptions.

In sum, if meaning is functional role, then it is false that a representation would have had just the effects that it did have if its meaning had been different. Different meaning requires different functional role, and different functional role requires different causes and/or effects. So the Counterfactual Argument is unsound if meaning is functional role.

In terms of the original paradox, the point is that internal processors can be sensitive to both syntax and semantics. But how is this possible? Are the meanings of a gate's outputs dependent on the meanings of its inputs?

Of course not — and therein lies the fallacy of the original argument. Thinking of internal processors on the model of gates misleads. For a processor that is a genuine intentional system the difference between a representation's meaning one as opposed to truth or green, would involve differences in the internal part of the functional role of the representation. Not so for a gate. If we ask whether a representation would have had just the same behavioral effects had it had a different meaning, then for many differences in meaning, the answer will be yes for a genuine intentional system, though not for a simple primitive processor such as a gate. Indeed, the criterion of identity natural for a complex processor allows one to consider whether a given processor would have processed a representation differently had it had a different meaning. But the natural criterion of identity for a gate rules out the possibility of its processing differently (while remaining the same gate).

This point is easier to appreciate if we distinguish between autonomous and observer-relative meaning (Searle, 1980; Haugeland, 1980). Observer-relative meanings are inherited meanings, meanings
that intentional systems assign (e.g., to linguistic items or states of a machine). Autonomous meanings are meanings of representations or representational states of an intentional system—*for* that system. They get their meanings from their function in the system. The representations of gates have *only* observer-relative meanings. (My representations have autonomous meanings for me, but they can also have a variety of observer-relative meanings for others.) We can decide, if we like, that a 'I' that is input to a gate means one, whereas an output 'I' means Richard Nixon. We have a free hand. But autonomous meanings are not subject to whim in this way. It is for autonomous meanings that the point I have been making applies. Had an input symbol had a different autonomous meaning (for a genuine intentional system), then it could have had a different functional role and thus different effects.

The trick of the argument that originally got us into trouble is to concentrate on the example of a gate in which only observer-relative meaning is relevant, making us forget that we do not have a free hand in this way with autonomous meaning.

Of course the autonomous meanings of my representations could have been different in *certain* ways without any change in the movements of my body. This is what is imagined in the famous "twin earth" examples—referential changes without changes in internal functional roles. But of course twin earth cases are elaborately artificial, and one should not conclude from them that had a representation meant something else, the same behavioral effects would have occurred nonetheless. The misleading effect of the gate example is to trick us into treating all hypothetical differences in meanings of representations as if they are twin earth cases. If we compare *and* gates whose '1's' mean one versus truth, we are considering an analog of a twin earth case. But for gates, twin earth cases come cheap. To read this cheapness of twin earth cases back onto genuine intentional systems is in effect to suppose that any old counterfactual situation in which references would be different is a twin earth case, and this is a bad mistake.

When I presented the Paradox of the Causal Efficacy of Content, I mentioned three premises: that intentional content is causally relevant to behavior, that intentional content reduces to meanings of internal representations, and that internal processors are sensitive to syntax, not meaning. Thinking of these as the premises, the argument is unsound because the third premise is false.

But when I spelled the argument out, I said that primitive processors are sensitive to syntax, not meaning. I then argued that the meaning of a representation cannot influence the behavior of a system of processors without influencing any of the particular processors themselves. So
if meaning can’t influence the behavior of a gate, it can’t influence the behavior of a system of gates. This reasoning is mistaken (given the cognitive science assumption that a computer – a system of gates – can be an intentional system – an assumption that I am accepting for the purposes of this discussion) and so understood this way, the original argument is sound but invalid.

5. Internal functional role and external content

Dretske (1988) has argued that the semantic content of a representation is causally relevant to behavior. This section will briefly note that his point has little to do with the problem of epiphenomenalism as I have been discussing it. I think of Dretske’s considerations as counting in favor of the idea that the informational values of our representations – what they “indicate” about the world – are causally relevant to the production of the purely “internal” aspect of their functional roles. (In terms of the “two factor” version of functional role semantics [see Block, 1986, and further references there], the external factor is causally relevant to the production of the internal factor.) But – and this is my point – informational value can be causally responsible for our representations’ functional roles without being involved in the “triggering” of any actual behavior (in the usual sense of ‘behavior’).

Consider whatever it is that the frog uses to represent flies – let’s call it the frog’s fly representer.7 There is an aspect of the functional role of this representer that is completely internal – mainly a matter of its production by flashes of movement on the frog’s retina and its role in controlling the aim of tongue launchings. In addition to its internal functional role, this representer has informational content regarding flies and their locations. The point is that the latter plausibly has been causally relevant to the former. More exactly, the informational value of ancestors of this representer – what they have been indicating about the world – have been involved, or so one might suppose, in the production of the representer’s current functional role. Perhaps an ancestor of the frog had an internal state that had some informational content with respect to ancestors of flies or other food on the wing, and influence of this state on tongue launching conferred extra inclusive fitness on the frog ancestors whose fly-information state had the right sort of influence on tongue launchings. We may speculate that evolution recruited a primitive motion detector that provided a modicum of information about winged bugs to guide the prefrog’s tongue, thereby improving the prefrog’s chances of a meal. As the bugs evolved into (or were replaced by) flies, the detector was turned by evolution to flies.
Then the fact that the frog’s fly representer has been carrying information about flies has causally contributed to giving this representation the functional role that it has — being produced by retinal movement flashes and guiding zapping. More generally, the line of thought is that what our representations have been indicating about the world has had an influence — via evolution — on their having the functional roles that they have in our heads.

I do not wish to go into this reasoning in any detail, consider objections to it, or talk about the extrapolation from frogs to people. I want to point out only that even if the reasoning is entirely correct in its own terms, it does not show that the informational content of a representation is part of what is causally relevant to (in the sense of a “triggering” cause) the behavioral output that the representation causes, and so Dretske’s proposal is not a solution to the problem being considered in this paper.

Suppose that the frog has a fly-word (‘FLY’), the informational content of which has been causally relevant to the establishment of the internal functional role of ‘FLY’, including the guiding of the frog’s tongue zapping behavior. Is this informational content thereby causally relevant to the production of, i.e., involved in the causation of, any particular zapping? This is the epiphenomenalism issue of this paper (applied to this case). The answer is obviously not. X can have causally promoted the pattern of \(Y \rightarrow Z \) without in any way triggering the current token of \(Z \). For \(X \) can have promoted \(Y \rightarrow Z \) without now causing \(Y \) or enabling \(Y \) to cause \(Z \). The informational content of ‘FLY’ does not causally contribute to the appearance of this token of ‘FLY’ in the frog’s head. That is done by the fly that caused it. And once ‘FLY’ has appeared in the frog, the informational content does not enable or aid ‘FLY’ in producing a zapping. To dramatize the point, suppose that the current ‘FLY’ token is a misrepresentation caused, say, by a B-B. This fly token nonetheless indicates flies (a misrepresentation of a fly is still a representation of a fly). The history of correlation of ‘FLY’ tokens with flies has contributed to the functional role of ‘FLY’ tokens in the frog, but once that role is set, the past correlation is irrelevant to the process by which the B-B now produces the current ‘FLY’ token, which in turn produces the zapping that pops the B-B into the frog’s gut. We can tell the whole mechanistic story about this causal process without saying anything about how the mechanisms that subserve it arose. And it is this former question that this paper is about: is content part of the causal process by which behavior is produced?

The plot so far is that function can win a battle at the end of the crucial case section is not the tentative.

In brief, it consist in the properties of inputs and non-function not the function.

To get at this of a funny which I mean or other (say one another properties etc.). Consist in ignoring the provokes the anger. The evoke of having some property the provokes the bull is too powerful to provoke the

Another property, the first-order if

\(x \) is dormant (when \(x \) is in your noticing falling asleep),
6. Functional properties

The plot so far is: functionalism meets arguments for epiphenomenalism and slays them. It would be nice to stop here, but alas, the story of the victory of functionalism over epiphenomenalism is fiction. I argued that functionalism does defeat the Counterfactual Argument, but you can win a battle and still lose the war. Functionalism loses the war in the end because functional properties are causally inert in certain crucial cases. Or rather, I fear that all this is true. The point of this section is to raise a skeptical doubt. The issues are complex, and I do not have the space to explore them adequately. So my claims must be tentative.

In brief, my point is this. Functional properties are properties that consist in the having of some properties or other (say non-functional properties) that have certain causal relations to one another and to inputs and outputs. In the production of those outputs, it is the non-functional properties that are standardly the causally relevant ones, not the functional properties.

To get at the point, let's consider a slightly more general notion than that of a functional property, the notion of a second-order property, by which I mean a property that consists in the having of some properties or other (say first-order properties) that have certain causal relations to one another. (The greater generality here is just that second-order properties needn't involve inputs and outputs, as with functional properties.) Consider the bullfighter's cape. The myth (which we will accept, ignoring the inconvenient color-blindness of bulls) is that its red color provokes the bull; that is, redness is causally relevant to the bull's anger. The cape also has the second-order property of being provocative, of having some property or other that provokes the bull, of having some property or other that is causally relevant to the bull's anger. But does the provocativeness of the cape provoke the bull? Is the provocativeness causally relevant to the bull's anger? It would seem not. The bull is too stupid for that. The provocativeness of the cape might provoke the ASPCA, but not the bull.

Another example: consider dormitiveness construed as a second-order property, the possession of some property or other (for example, a first-order chemical property) that is causally relevant to sleep. That is, \(x \) is dormitive if \(x \) has some property that is causally relevant to sleep (when \(x \) is ingested). If a dormitive pill is slipped into your food without your noticing, the property of the pill that is causally relevant to your falling asleep is a (presumably first-order) chemical property, not, it
would seem, the dormitivity itself. Different dormitive potions will act via different chemical properties, one in the case of Valium, another in the case of Seconal. But unless you know about the dormitivity of the pill, how could the dormitivity itself be causally relevant to your falling asleep?

Of course if you do know about the dormitivity, then it can be causally relevant to your sleep, just as the provocativeness of the cape can affect the ASPCA. In fact, there is a well-known phenomenon in which dormitivity does cause sleep, namely, the placebo effect. If a dormitive pill is so labeled, thereby causing knowledge of its dormitivity, this knowledge can cause sleep (though the truth and justification of the knowledge are of course causally irrelevant). So dormitivity can be causally relevant to sleep. (Indeed, there can be a dormitive pill that works without any first-order effect, a pill whose dormitivity requires its own recognition. Suppose I market a sugar pill as a dormitive pill, and it becomes popular and works well. I make a fortune and close my plant. Years later, when all my pills have been used up, one of my customers who had had years of sound sleep as a result of taking my pills finds out that they worked via the placebo effect and sues me. Surely I can point out that he was not cheated — the pills were genuinely dormitive, there was no false advertising.)

My claim is that second-order properties are not always causally relevant to the effects in terms of which they are defined. The only cases that I can think of in which second-order properties seem to be causally efficacious are those where an intelligent being recognizes them. That is why I keep mentioning “standard” cases, cases where a second-order property is defined in terms of an effect and that effect is produced without any recognition of the second-order property by an intelligent being. I add to the claim of the first sentence of this paragraph the more tentative claim that in these standard cases, the second-order property is causally ineffectual.

But how can it be that second-order properties are inert in some cases, efficacious in others? Think (temporarily) in terms of a nomist theory of causal relevance. If dormitivity of a pill were nomologically sufficient for the ingester getting cancer (Jerry Fodor keeps trying to convince me that such a thing could happen without recognition of dormitivity by an intelligent being), then (let us suppose) dormitivity would be causally relevant to cancer. But such causal relevance to cancer would not show or even suggest that dormitivity is nomologically sufficient for sleep. Hence we might have causal relevance to cancer but not to sleep: non-standard causal relevance without standard causal relevance. (More on nomological sufficiency in a moment.)
Second-order properties involve having some properties or other, and though it is often helpful to think of the properties quantified over as first-order, actually they can be any properties at all. There is a general procedure (see Lewis, 1970) for defining a second-order property, given a theory in which the property plays a role so long as the theory allows some sort of a distinction between theoretical and observational terms. (In the case of a psychological theory, the distinction would be cashed as theoretical = mental, and observational = input/output.) If the theoretical terms are \(T_1, \ldots, T_n \), we can write the theory as \(T(T_1 \ldots T_n) \), leaving out all mention of the observational entities. Then we can define \(T_i \) as follows: \(x \) has \(T_i = E F_1 \ldots E F_n [T(F_1 \ldots F_n)] \) and \(x \) has \(F_i \).

So far, the case I've made for the limited causal inertness of second-order properties is based entirely on examples. But if the counterintuitive consequences of this causal inertness are as bad as I will claim they are, a natural response will be simply to live with rejecting my way of taking such examples. That is, if I am convincing later when I say why the causal inertness of the second-order commits us to a view of the special sciences that is hard to swallow, the reasonable response would be that we should just suppose that dormitivity is causally relevant to sleep, and provocativeness does affect the bull. So I will try to get at the principles that underlie our reaction to the examples. I can think of two.

First, let us return to the nomist conception of causal relevance. On that conception, second-order properties are not causally relevant to the effects in terms of which they are defined because they are not nomologically sufficient for those effects. Consider dormitivity and sleep. The relation between the two is more like the relation between being a widow and having had a husband than that between, say, heat and expansion. If a pill is dormitive in the following sense: \(x \) is dormitive iff \(x \) has some property that causally guarantees (this is where this definition differs from the one offered earlier) sleep if \(x \) is ingested and I take the pill, it follows that I sleep. The fact that dormitivity is sufficient for sleep is perfectly intelligible in terms of this logical relation. What reason is there to suppose that there must also be a nomological relation between dormitivity and sleep?

Now, I am very much not saying that a logical relation between properties precludes a nomological relation. This is as much a fallacy for properties as for Davidsonian token events. Suppose dormitivity is my aunt's favorite property, and sleep is my uncle's, and that my uncle tracks changes in my aunt's favorite property, changing his own so that his is always entailed by hers. Then dormitivity and sleep will be both nomologically and logically related. Logically related under one set of
descriptions, nomologically under another. My point is not that a logical relation precludes a nomological relation, but rather that the logical relation between dormitivity and sleep tells us perfectly well why dormitivity involves sleep. There would have to be some special reason to postulate a nomological relation as well, and since the story about my aunt and uncle wasn't true, I don't see any such special reason. The point that this example is meant to make is that it would be amazing if there was always some special reason why a second-order property was nomologically related to the effects in terms of which it is defined.

This consideration is based on the fact that second-order properties are defined in terms of effects. A second argument is based on a different feature of second-order properties, the quantification involved in them.

Supposing that provocativeness provokes the bull would be supposing a strange sort of overdetermination of the bull's anger. Of course overdetermination does sometimes happen. (The placebo effect is an example.) But to suppose that it always happens would be to suppose a bizarre systematic overdetermination. Whenever we have a first-order causal relation we can always define a second-order property on the model of provocativeness, and so every first-order causally relevant property would jointly determine its effect together with a second-order property. Indeed, the procedure iterates (for there is a third-order property that consists in the possession of a second-order property that is causally relevant to the effect), and so whenever there is one causally relevant property there would be an infinity of them. Even if the first-order property is causally sufficient for the effect, there would still be an unending series of other causally relevant properties. And we can define causally sufficient higher-order properties that would also be causally sufficient by the same reasoning.

The relation between second-order properties and the effects mentioned in their definitions is a “fork” relation, a bit like the one discussed earlier in the section on correlation and causation. Both heat and electricity are conducted by free electrons in metals. Rising velocity of free electrons

1. Is responsible for rising thermal conductivity, and thus causally relevant to the explosion
2. Is responsible for the epiphenomenal rising electrical conductivity.

Similarly, there is a first-order chemical property of Seconal that

1. Is causally relevant to sleep
2. “Generates” an epiphenomenal second-order property of possessing some property that is causally relevant to sleep.

In other words, explosion vs. conductivity, sleeping vs. rises in epiphenomenal electricity.

The picture is thus one of analogies jumping off from different, a (limited) analogy used to pro.

vocativeness as an example. Let us use the 'model of provocativeness' and argument also used to explain overdetermination.

The picture is thus one of analogies jumping off from different, a (limited) analogy used to pro.

vocativeness as an example. Let us use the 'model of provocativeness' and argument also used to explain overdetermination.

The picture is thus one of analogies jumping off from different, a (limited) analogy used to pro.

vocativeness as an example. Let us use the 'model of provocativeness' and argument also used to explain overdetermination.
hat a logical argument and the overdetermination property was surprisingly amiable. But this is hardly surprising. The amazing if property was defined.

properties based on a relation involved be supposing. Of course, an effect is an to suppose a first-order property on the only relevant second-order third-order property that one causally. Even if the e would still And we canuld also be effects make the one situation. Both metal. Rising nus causally I conductive-

inal that

y of possession-

In other words, just as the rising velocity of free electrons causes the explosion while engendering an epiphenomenal increase in electrical conductivity, so the chemical property causes the sleep while engendering an epiphenomenal second-order property of dormitivcy.

The picture just sketched is attractive, but hardly compelling. The analogy just mentioned is far from perfect. The two engendering relations mentioned in the preceding paragraph are certainly very different, and besides the analogy only holds if I am right about the (limited) epiphenomenality of second-order properties, so it cannot be used to prove that epiphenomenality. (Incidentally, the fact that the chemical property “engenders” dormitivcy rather than causing dormitivcy illustrates the difference between what I am calling ‘epiphenomenalism’ and traditional epiphenomenalism.) The overdetermination argument also is far from convincing. We are normally reluctant to accept overdetermination because it is wrong, other things equal, to postulate coincidences. If a man dies by drowning, we cannot suppose that there is always another cause of death as well, say, shooting. But no such coincidence would be involved in the series of higher-and-higher-order causally efficacious properties I mentioned. If accepting such a series of causally efficacious properties is a price that must be paid for avoiding the problems to be mentioned, it can be paid.

In the end, the argument based on nomological theories of causal relevance is the best one. However, we can hardly expect those who favor counterfactual theories of causal relevance to be convinced. Here, as earlier in the paper, the lesson is that if you want to avoid epiphenomenalism, go for a counterfactual theory of causal relevance, not a nomological theory. This is, I suppose, the main positive point of the paper, though its significance depends on the fate of the counterfactual approach.

Let me sum up the skeptical thesis. Suppose that a second-order property is instantiated, and the effect in terms of which it is defined occurs; my claim is that the second-order property needn’t be causally relevant to the effect. I have mentioned one type of case in which a second-order property can aect the effects in terms of which it is defined (and other things as well), namely, when intelligent recognition of them takes place, as in the placebo effect. Accepting other sorts of second-order effects (e.g., causal relevance of dormitivcy to cancer) would not change my claim, since the arguments I gave for the limited epiphenomenality – the nomological argument and the overdetermination argument – were restricted to the causal relevance of a second-order property on the effects in terms of which it is defined, not other effects. The epiphenomenalism I am worried about is not total inertness of content properties, but whether, for example, the content of my
desire for an ice cream cone is causally relevant to my going to the ice cream shop.⁹

At this point, I shall change gears abruptly. Although, as I've said, the case I've made for the (limited) inefficacy of the second-order property is far from conclusive. I think I have said enough for it to be taken seriously. What I now propose to do is simply assume that second-order properties are not always causally relevant to the effects in terms of which they are defined, and go on to discuss the consequences of this idea.

The skeptical point of this section depends on the fact that the mechanisms that manipulate genes and the mechanisms that manipulate the internal representations in the brain are not intelligent, and so cannot recognize second-order properties. Hence these are just the kinds of cases in which it would seem that the second-order properties are inefficacious with respect to the effects in terms of which they are defined. Likewise for other special sciences whose properties are plausibly second-order.

By way of an example, consider a simple finite automaton, the one specified by the machine table of Figure 5. What the table requires of any machine that it describes is that it have two states, S₁ and S₂, such that when the machine is in S₁ and sees a '1', it cries 'odd' and goes into S₂; and when the machine is in S₂ and sees a '1', it cries 'even' and goes back into S₁. And when the machine is in S₁/S₂ and sees no input ('-' symbolizes the null input), it cries 'even'/'odd' (respectively), staying in the same state. Thus the machine tells us whether it has seen an odd or even number of '1's' (though not entirely successfully, since it is under the impression that 0 is an even number).

Now suppose we have a machine on the desk in front of us that satisfies Figure 5 (i.e., is described by the table) and is in S₁; it sees a '1', and so it cries 'odd'. Let us ask: is the property of being in state S₁ (of a machine of the type of Figure 5) causally relevant to the production of the cry of 'odd'? If the points made about dormitivity and provocativeness are right, it would seem not. If we think of S₁ as a property, it is the property related to on 5. These other gears-and-computer implemented strange cases are causally relevant but are not such implementations.

The upshot is that what computation implement the strange case is comparably irrational.

Consider a plausibly plausible and actual chara dominance of the distal
there are n properties of chemical processes such as processors' properties which they gene.¹⁰

In sum, inconsistent:

1. Specific
2. Specific
3. Specific

I have just said us is a d epiphenon
the property that consists in having two other properties that are related to one another and to inputs and outputs as specified in Figure 5. These other properties would be mechanical properties in the case of a gears-and-pulleys implementation, electronic properties in a usual computer implementation, and so on. If we are dealing with an electronic implementation, then it is the electronic properties that are causally relevant to the cry of 'odd', not the property of possessing some such implementation property.

The upshot is that computational properties have no causal relevance to what computers do, these effects being entirely the product of the implementations of the computational properties. This is indeed a strange conclusion, and if I am right about second-order properties, comparably strange conclusions could be reached about other functional sciences.

Consider the property of being a brown-hair gene. This property is plausibly functionally characterizable in terms of its patterns of inheritance and interaction with other genetic properties in determining actual characteristics, for example, in the fact that brown-hair genes are dominant over blond-hair genes. Such second-order properties are part of the distinctive conceptual apparatus of Mendelian genetics. But there are no genetic mechanisms that detect or are sensitive to the property of being a brown-hair gene. Genetic mechanisms detect biochemical properties, and the property of being a brown-hair gene arises via the processing based on biochemical properties. Similarly, computational properties such as S_1 mentioned above arise via the activity of processors that detect syntactic properties, not computational properties such as S_1. And semantic properties arise via the activity of processors that detect syntactic properties. All these second-order properties are epiphenomenal with respect to the effects in terms of which they are defined, such as brown hair in the case of the brown-hair gene.

In sum, we want to maintain all of the following, but they are inconsistent:

1. Special science properties are causally relevant to the effects those sciences predict and explain.
2. Special science properties are often functional.
3. Functional properties are standardly causally irrelevant to the effects they are defined in terms of.

I have just argued for 3. If I am right, then we have what for many of us is a dilemma: we must either abandon functionalism or accept epiphenomenalism. But am I right about 3? Recall that the case for 3
depended mainly on the nomological approach to causation, and perhaps the way out is to reject that approach. Before accepting that conclusion, however, it would be best to examine another way out.

7. Because

The claim that second-order properties are standardly causally irrelevant to the effects in terms of which they are defined seems to fly in the face of a variety of commonsense and scientific facts, for example, true uses of the following:

I slept because I took a sleeping pill.
My muscle tension evaporated because I took a muscle relaxant.
The vase broke because it was fragile.
I have blue eyes because I have two blue-eye genes

I shall argue that such facts only seem incompatible with the (standard) causal inefficacy of the second order because of two ambiguities that easily escape notice.

Explanation and causation

One ambiguity is that between explanatory and causal uses of 'because'. It is easy to be unclear about whether a 'because' statement is true in an explanatory or causal sense of 'because'. If the dispositional/functional terms in the sentences listed above are understood to refer to second-order properties, then the sentences are only true on an explanatory, not a causal, reading of 'because' – if the line of thought of the last section is correct.

Audiences who have heard this chapter read as a paper have often objected that although there is a clear distinction between explanation and causation, the distinction between the *causal-explanatory relevance and causal relevance of properties* that I rely on here is a distinction without a difference. Here is the issue: The kind of explanation involved here is causal explanation, which is one of a number of species of explanation. So the kind of explanatory relevance of properties at issue is causal-explanatory relevance. And what is the distinction between causal-explanatory relevance of properties and causal relevance of properties?

Here is a way of seeing that there is a difference and what it is: notice that we can causally explain a case of sleep via appeal to the second-order property of dormitivy. I fell asleep because I took a pill that had the property of having some property or other that causes sleep. This is causal-explanatory appeal of my falling second-order appeal to do Dormitivy causally relev appeal to a p tion of sleep chemical pro second-order in the posses cause it invol property can causally effic first-order or for the stand
Can the mind change the world?

163

causal-explanatory because it rules out alternative causal explanations of my falling asleep, for example, that I was grading papers. But second-order properties being (standardly) causally inefficacious, the appeal to dormitive is not an appeal to a causally relevant property. Dormitive is causal-explanatorily relevant to sleep without being causally relevant to sleep. Why? The appeal to dormitive involves an appeal to a property that is genuinely causally relevant to the production of sleep, namely, the unnamed property (presumably a first-order chemical property) whose existence is mentioned in the analysis of the second-order property, the one that the dormitive of the pill consists in the possession of. Dormitive has causal-explanatory relevance because it involves a causally efficacious property. A causally inefficacious property can nonetheless be causal-explanatory if it "brings in" a causally efficacious property. But the causally relevant property is the first-order one, not the second-order one (assuming that my argument for the standard causal inertness of the second-order was right).

Ambiguity of functional terms

Functional terms are ambiguous. Let's take 'dormitive' as an example. One construal is the second-order one much discussed here already: dormitive = possessing a property that causes sleep. The other construal, one equally justified in ordinary usage, is the property that causes sleep. This is the natural reading of 'dormitive virtue' in the assertion that the dormitive virtue of Seconal is causally responsible for sleep. This latter construal is one in which 'dormitive' is analyzed as a definite description that picks out the first-order property that is quantified over in the former construal. The two construals are very different in their relation to context. 'Dormitive', on the former construal, always picks out the same second-order property. But on the latter construal, it picks out different first-order properties in the case of different types of sleeping potions. For the property that causes sleep in the case of Seconal is different from the property that causes sleep in the case of Valium. Similarly, 'the winning number' picks out different numbers in different lotteries (Lewis's example).

To sum up: In the second-order sense, dormitive is not causally relevant to sleep; in the first-order sense, it is. And the plausibility of the 'because' claims mentioned at the outset of this section can be ascribed to the first-order interpretation.¹¹

David Lewis has long advocated a form of functionalism based on Smart's idea of topic neutral analyses of mental terms (Lewis, 1972). Functional terms are defined by Lewis in the latter of the two manners
mentioned above - in terms of definite descriptions. Many functionalists adopt a functional state identity thesis, one that identifies mental states with second-order properties. Lewis, by contrast, says that mental states are functionally specified brain states. Many functionalists take pain to be a second-order state, but Lewis takes pain to be the first-order brain state that plays the role characterized by the second-order state. Where some functionalists identify mental states with states that consist in causal roles, Lewis takes mental states to be the entities that have the causal roles. The issue is about how to regiment the language of the mental (and other theoretical languages).

Now some may embrace Lewis's first-order reading of functional terms of the special sciences as a way of having their cake and eating it too. On Lewis's construal, it is correct to say “Dormitivy is causally relevant to sleep,” “Content is causally relevant to behavior,” and the like. If we accept Lewis's reading, we can preserve the talk that would be appropriate if special science properties were causally efficacious. So it seems that we can avoid epiphenomenalism, and not have to give up functionalism. And there is no need to reject a nomological theory of causal relevance.

Unfortunately, the Lewis solution (as I shall call it) is only cosmetic. To construe the functional terms of a special science in Lewis's manner is to construe them as picking out “lower level” properties, properties of an implementation science. ‘Believing that grass is green’ on the Lewis construal picks out a physiological property. (In us, that is; in the case of a hypothetical intelligent computer, it would pick out an electronic property.) And in a certain sense, ‘believing that grass is green’ does not pick out a psychological property; that is, it does not pick out a property that is part of the distinctive conceptual apparatus of psychology. On Lewis’s construal, ‘brown-hair gene’ (a term used by Mendelian geneticists long before the advent of molecular biology) picks out a piece of DNA, the concept of which would have been utterly alien to Mendel. Consider the computational state S₁ of Figure 5. I said it was a computational state, and indeed the computational definition was given in the text. But on Lewis’s construal, ‘S₁’ picks out an electronic state or a mechanical state, or some other implementation state, depending on the way the automaton is constructed. ‘S₁’ would be defined by Lewis’s method as the (contextually relevant) state that has the role specified in the table of Figure 5. So ‘S₁’ does not pick out a computational state at all.

Of course, if a “psychological property” is just a property picked out by a psychological term, then ‘believing that grass is green’ does pick out a psychological property. Pickwickia the conceptual apparatus of the special sciences, of the mind, of the concept of a brown-hair gene. But ‘having a configuration state S₁’ picks out a computational state, not a special science property, not a psychological property, and not a physiological property (unless the automaton happens to be a hypothetical intelligent computer).
Many functionalists take mental properties to be the entities to which the psychological states (other than the mental properties of Mendelian genetics) are properties of. But these construals of "psychological property" (as Mendelian in a Pickwickian sense) are not part of the conceptual apparatus of psychology. Mendelian properties are properties of Mendelian genetics, and computational properties are properties of special sciences, implementation sciences. The Lewis construal does not preserve a way of talking that we want. We can speak of the psychological state of a computer scientist as being a computational state (except in the Pickwickian sense). So a Lewis vindication of the causal efficacy of the psychological state of the computer scientist is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.

I agree with the Lewisian manner, but for different reasons. Conceiving terms of the special sciences in the Lewisian manner does not make the second-order properties of the special sciences distinct. Rather, it merely forces us to construe the special sciences in the Lewisian manner, by picking out a genuine computational state. But having the belief that grass grows picks out a genuine computational state. Hence, the preservation of talk of the causal efficacy of the psychological state is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.

I agree with the Lewisian manner, but for different reasons. Conceiving terms of the special sciences in the Lewisian manner does not make the second-order properties of the special sciences distinct. Rather, it merely forces us to construe the special sciences in the Lewisian manner, by picking out a genuine computational state. But having the belief that grass grows picks out a genuine computational state. Hence, the preservation of talk of the causal efficacy of the psychological state is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.

I agree with the Lewisian manner, but for different reasons. Conceiving terms of the special sciences in the Lewisian manner does not make the second-order properties of the special sciences distinct. Rather, it merely forces us to construe the special sciences in the Lewisian manner, by picking out a genuine computational state. But having the belief that grass grows picks out a genuine computational state. Hence, the preservation of talk of the causal efficacy of the psychological state is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.

I agree with the Lewisian manner, but for different reasons. Conceiving terms of the special sciences in the Lewisian manner does not make the second-order properties of the special sciences distinct. Rather, it merely forces us to construe the special sciences in the Lewisian manner, by picking out a genuine computational state. But having the belief that grass grows picks out a genuine computational state. Hence, the preservation of talk of the causal efficacy of the psychological state is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.

I agree with the Lewisian manner, but for different reasons. Conceiving terms of the special sciences in the Lewisian manner does not make the second-order properties of the special sciences distinct. Rather, it merely forces us to construe the special sciences in the Lewisian manner, by picking out a genuine computational state. But having the belief that grass grows picks out a genuine computational state. Hence, the preservation of talk of the causal efficacy of the psychological state is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.

I agree with the Lewisian manner, but for different reasons. Conceiving terms of the special sciences in the Lewisian manner does not make the second-order properties of the special sciences distinct. Rather, it merely forces us to construe the special sciences in the Lewisian manner, by picking out a genuine computational state. But having the belief that grass grows picks out a genuine computational state. Hence, the preservation of talk of the causal efficacy of the psychological state is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.

I agree with the Lewisian manner, but for different reasons. Conceiving terms of the special sciences in the Lewisian manner does not make the second-order properties of the special sciences distinct. Rather, it merely forces us to construe the special sciences in the Lewisian manner, by picking out a genuine computational state. But having the belief that grass grows picks out a genuine computational state. Hence, the preservation of talk of the causal efficacy of the psychological state is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.

I agree with the Lewisian manner, but for different reasons. Conceiving terms of the special sciences in the Lewisian manner does not make the second-order properties of the special sciences distinct. Rather, it merely forces us to construe the special sciences in the Lewisian manner, by picking out a genuine computational state. But having the belief that grass grows picks out a genuine computational state. Hence, the preservation of talk of the causal efficacy of the psychological state is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.

I agree with the Lewisian manner, but for different reasons. Conceiving terms of the special sciences in the Lewisian manner does not make the second-order properties of the special sciences distinct. Rather, it merely forces us to construe the special sciences in the Lewisian manner, by picking out a genuine computational state. But having the belief that grass grows picks out a genuine computational state. Hence, the preservation of talk of the causal efficacy of the psychological state is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.

I agree with the Lewisian manner, but for different reasons. Conceiving terms of the special sciences in the Lewisian manner does not make the second-order properties of the special sciences distinct. Rather, it merely forces us to construe the special sciences in the Lewisian manner, by picking out a genuine computational state. But having the belief that grass grows picks out a genuine computational state. Hence, the preservation of talk of the causal efficacy of the psychological state is irrelevant. Since believing that grass is green is a physiological, not a psychological, state, the preservation of talk of the causal efficacy of the mental is only cosmetic.
of talking is the same as the one I have been trying to avoid: special sciences whose distinctive properties are causally inert but that can be used to pick out causally efficacious properties of lower-level sciences.

This brings me to a second objection to the Lewis solution. Second-order properties in the sense discussed here are properties that consist in the having of properties with such and such relations to one another. As I mentioned earlier, the properties quantified over need not be first-order. In the case of our mental properties construed as second-order properties, the quantified properties are physiological. Physiological properties are biological properties, and biological properties generally are prime candidates for functional analysis. Thus 'believing that grass grows' construed in the Lewis manner, since it picks out a physiological property, may pick out another functionally individuated property. Perhaps biological terms themselves pick out first-order properties, but perhaps not. Perhaps only the most fundamental of physical properties are genuinely first-order. In that case, even much of physics would be epiphenomenal! Or perhaps not even the most fundamental physical properties are first-order. (Maybe there isn't any most fundamental level.) Perhaps science is functional "all the way down." (Recall that there is a case made by Lewis himself for functional analysis of all theoretical terms.) This is not a matter that is easily resolved, but without a resolution that rules out the "functional all the way down" option, we cannot rely on construing mental language in Lewis's manner to rescue us from epiphenomenalism.

Construing special science terms in Lewis's manner makes epiphenomenalism easier to stomach, but epiphenomenalism with controlled heartburn is still epiphenomenalism. Perhaps the solution is to reject functionalism, but if functionalism is rejected, we must begin anew to confront the arguments for epiphenomenalism in the computer model all over again. Functionalism at least has the virtue of disposing of epiphenomenalism on a counterfactual understanding of causal relevance. However, if we prefer the nomological approach to causal relevance, I am doubtful that there is any way of avoiding epiphenomenalism.

Notes

1 There are, however, important differences that I don't have the space to go into. Briefly, it is more plausible that content supervenes on the neural level than that content supervenes on the "syntactic" level. (More about the meaning of 'syntactic' here shortly.) An appeal to supervenience of content on lower levels can be used to attempt to avoid the epiphenomenalism argument.

2 The idea of first appeal to causal means among the if it enou symbols, at symbols, identifying neurologic.

3 This has been chal see Kim (1980) arg and Blackb

4 Alternative temperatur explode will part will co to be un the explosive conductivity condition ble.

5 See Block (or)

6 LePore and Counterfac syntactic of have cause meanings a stances, the by a differ screen off the syntacti that is abou Counterfac symmetrical other, so the club against c

7 This issue The LePore particular in my head behavior, B agree that S meaning at Bruce even.

8 Certai all, then if Had the ori we may sup Bruce-like reated causall
2 The idea described here was, as far as I know, first articulated in Fodor (1975, 1980). See also Dennett (1981) in which the terms 'semantic engine' and 'syntactic engine' first appear, and Newell (1980) and Pylyshyn (1984). I spoke of a correlation between causal interactions among symbolic structures in our brains and sensible relations among the meanings of the symbol structures. This way of speaking can be misleading if it encourages the picture of the neuroscientist opening the brain, just seeing the symbols, and then figuring out what they mean. Since syntactic objects (and perhaps meanings as well) are functional entities (though different types of functional entities), identifying either of them in the brain will require considerable appreciation of neurological functioning.

3 This has long been a central dogma of the computational point of view, and has long been challenged by some philosophers. For arguments against the claim stated here, see Kim (1972), Richardson (1978), Enc (1982), and Patricia Churchland (1986). Block (1986a) argues against Kim, Patricia Kitcher (1980, 1982) argues against Richardson, and Blackburn (forthcoming) argues against Enc and Churchland.

4 Alternatively, we could raise the thermal conductivity of the rod by raising its temperature, in which case part of the additional heat that causes the bomb to explode will come from the heat source that raises the temperature of the rod, and part will come from the fire via the increased thermal conductivity of the rod. I take it to be uncontroversial that rising thermal conductivity of the rod is causally relevant to the explosion. Further, this case suits the monist model. For in this setup, raising thermal conductivity, ceteris paribus, is sufficient for an explosion, and the ceteris paribus condition is satisfied.

6 LePore and Loewer (1987) give an objection (in effect) to Sosa’s (1984) version of the Counterfactual Argument. Putting the matter in my terms, they agree that if a syntactic object with a certain meaning produces an output, the syntactic object would have caused the same output even if it had had a different meaning. But they add that meanings are lawfully related to behavior in some circumstances, so in such circumstances, the meaning would have caused the same output even if it had been carried by a different syntactic object. If the first counterfactual shows that syntactic forms screen off meanings from causal relevance, then the second shows the converse, that meanings screen off syntactic forms from causal relevance. But if both are true, both the syntactic form and the meaning of a representation are epiphenomenal, and since that is absurd, the obvious conclusion is that something is wrong with the form of the Counterfactual Argument. According to LePore and Loewer, semantics and syntax are symmetrically related to the production of behavior, if one is epiphenomenal, so is the other, so the Counterfactual Argument cannot use the causal relevance of syntax as a club against the causal relevance of semantics.

This issue deserves much more detailed treatment, but I can only summarize briefly. The LePore and Loewer argument fails to take into account the distinction between a particular event token, and some token of that type. Suppose I have a syntactic object in my head, Sally, with certain syntactic and semantic properties that produces behavior, Bruce. As I mentioned in the last paragraph, LePore and Loewer and I agree that Sally would have caused Bruce even if it had had a different meaning or no meaning at all. But can we make the symmetrical claim that Sally would have caused Bruce even if it had had a different syntactic identity or no syntactic identity at all? Certainly not! If Sally had had a different syntactic identity or no syntactic identity at all, then it simply would not be the syntactic object I originally picked out as ‘Sally’. Had the original meaning been ‘carried’ by a syntactic object not identical to Sally, we may suppose that the result would have been a Bruce-like behavior. But this Bruce-like behavior would not be identical to Bruce — given that events are individuated causally, as all good Davidsonians (such as LePore and Loewer) believe. Bruce's
identity requires being caused by Sally. LePore and Loewer may feel that the way out is to talk not about the production of Bruce, but rather of Bruce-like events - types, not tokens. (There is some hint of this in their paper.) But the screening argument only works with tokens. What makes us want to say that the syntactic screens off the semantic is that the very same bit of behavior would have been produced even if the syntactic event that produced it had had a different meaning. (See Enc [1986] for a dissection of another fallacy that falls afoul of the type/token distinction together with causal individuation.) LePore and Loewer are right that there is a nonomological symmetry between syntax and semantics. That is, there are circumstances in which both the semantic and syntactic properties of an event are nomologically sufficient for a certain type of behavior. But what is at issue here is counterfactual symmetry rather than a nomological symmetry, and this they have not argued for.

Note that it is not part of the “Language of Thought” view to insist that the frog has a language of thought. The argument for a language of thought in humans depends on the productivity and systematicity of human thought, and this argument will not apply to creatures whose thought is not at least as productive and systematic. See the epilogue of Fodor (1987a).

8 My point differs from the usual skepticism about the causal efficacy of dispositional properties in this respect, and also in that it is about a category of properties - second-order properties - of which dispositional properties are only a special case.

9 After writing this chapter, I read Jackson and Pettit (1988), which claimed that second-order properties are ineliminable before I did. However, Jackson and Pettit say that second-order properties are inert, not just with respect to the effects in terms of which they are defined, but all effects. They don't give any of the arguments used here, though Jackson tells me (in correspondence) that the overdetermination argument is essentially consonant with their way of looking at things. They go further, committing themselves, I think, to the claim that all “multiply realizable” properties are causally inert. Thus if an increase in temperature of a gas inside a sealed glass container results in the glass shattering, they take the fact that there are many configurations of molecules that could realize this process to show that the increase in temperature did not cause the shattering, but rather the cause was the specific molecular interactions. They do not note that the same point applies to the molecular interactions, which are themselves multiply realizable in terms of interactions among electrons, protons, neutrons, etc. And of course, some of these particles are perhaps realizable in different ways by still smaller particles. The upshot of their position would be that the only genuine causality inheres at the level of basic physics. But what if there is no such level? This is a real physical possibility. (See Dehaene, 1989, 1990.) Their position dictates that we do not know for sure whether there are any causally efficacious properties at all. Jackson tells me that they are prepared to locate all genuine causality at the basic physics level, so long as one distinguishes between two types of causal relevance: the notion used here and the notion of causal relevance that corresponds to their idea of a causal programming explanation. The idea of causal programming can be illustrated by their example of an explanation of why trees grow faster in Melbourne than in Canberra. Why? Because there are more frosts in Canberra. There being more frosts in Canberra causes programs there being faster growth in Melbourne. They hold that second-order properties (and other multiply realizable properties) can be causally relevant to something in this causal programming sense, but not in the sense appropriate only to basic physics.

10 For the purposes of this example, I am ignoring the issue of whether there is anything at the molecular level that corresponds very well to the gene. See Philip Kitcher (1982).

11 See Block (1986a) for a more detailed discussion of the difference between the first- and second-order interpretations.

12 Block (1986), pp. 668-9, takes this way out, as does Jackson and Pettit (1988).
Can the mind change the world?

Bibliography

Scientific realism productive causal structure adoption of them, and causal structure the case for apparently involve references; the core to be theory 1988a, 1988b. Putnam 1979 that appeal

A variety of theory-dependent concepts and propositions are used in scientific research, providing a rich tapestry of ideas and perspectives.