Troubles with Functionalism

The functionalist approach to the philosophy of mind is increasingly popular; indeed, it may now be dominant (Armstrong, 1968; Block & Fodor, 1972; Field, 1975; Fodor, 1965, 1968a; Grice, 1975; Harman, 1973; Lewis, 1971, 1972; Locke, 1968; Lycan, 1974; Nelson, 1969, 1975; Putnam, 1966, 1967, 1970, 1975a; Pitcher, 1971; Sellars, 1968; Shoemaker, 1975; Smart, 1971; Wiggins, 1975). However, “functionalist” theories are the products of a number of rather different projects: attempts to reformulate logical behaviorism to avoid objections, attempts to exploit mind-machine analogies, attempts to apply empirical psychology to philosophy of mind, and attempts to argue for—or against—mental-neurological identity theses. Thus, though theories called ‘functionalist’ have a certain obvious family resemblance, it should not be surprising if there is no single doctrine about the nature of mind that all so-called functionalists share.

I shall consider those functionalist theories of mind that can be understood as identity theses in the tradition of claims that pain is a brain state. That is, the kinds of functionalism I shall discuss claim that there are functional states and that each mental state is identical to a functional state (or that there are functional properties and that each mental property is identical to a functional property). These functional-state identity theses are concerned with types of mental states or events, not (just) tokens—that is, pain, or the state of being in pain, rather than (just) particular datable pains—universals that can be instantiated in different people at different times, not (just) nonrecurring particulars.

I shall begin by describing functionalism and sketching the func-
tionalist critique of behaviorism and physicalism. Then I shall argue that the troubles ascribed by functionalism to behaviorism and physicalism infect functionalism as well.

Functionalism in the sense intended here should not be confused with the distinct, though related doctrine that the method of psychology is “functional analysis”—decomposing mental processes into their component subprocesses, which are individuated with regard to the role they play in the mental life of the organism (Fodor, 1968a, 1968b; Dennett, 1975; Cummins, 1975). Functionalism in this sense is a doctrine about the nature of psychological explanation, not a doctrine about what mental states are. Functionalism in the sense of this chapter, on the other hand, is an ontological doctrine.

One characterization of functionalism that is probably vague enough to be accepted by most functionalists is: each type of mental state is a state consisting of a disposition to act in certain ways and to have certain mental states, given certain sensory inputs and certain mental states. So put, functionalism can be seen as a new incarnation of behaviorism. Behaviorism identifies mental states with dispositions to act in certain ways in certain input situations. But as critics have pointed out (Chisholm, 1957; Putnam, 1963), desire for goal G cannot be identified with, say, the disposition to do A in input circumstances in which A leads to G, since, after all, the agent might not know A leads to G and thus might not be disposed to do A. Functionalism replaces behaviorism’s “sensory inputs” with “sensory inputs and mental states”; and functionalism replaces behaviorism’s “disposition to act” with “disposition to act and have certain mental states.” Functionalists want to individuate mental states causally, and since mental states have mental causes and effects as well as sensory causes and behavioral effects, functionalists individuate mental states partly in terms of causal relations to other mental states. One consequence of this difference between functionalism and behaviorism is that there are organisms that according to behaviorism, have mental states but, according to functionalism, do not have mental states.

So, necessary conditions for mentality that are postulated by functionalism are in one respect stronger than those postulated by behaviorism. According to behaviorism, it is necessary and sufficient
for desiring that G that a system be characterized by a certain set (perhaps infinite) of input-output relations; that is, according to behaviorism, a system desires that G just in case a certain set of conditionals of the form 'It will emit O given I’ are true of it. According to functionalism, however, a system might have these input-output relations, yet not desire that G; for according to functionalism, whether a system desires that G depends on whether it has internal states which have certain causal relations to other internal states (and to inputs and outputs). Since behaviorism makes no such “internal state” requirement, there are possible systems of which behaviorism affirms and functionalism denies that they have mental states.¹ One way of stating this is that, according to functionalism, behaviorism is guilty of liberalism—ascripting mental properties to things that do not in fact have them.

Despite the difference just sketched between functionalism and behaviorism, functionalists and behaviorists need not be far apart in spirit. Indeed, if one defines ‘behaviorism’—somewhat misleadingly—as the view that mental terms (e.g., ‘pain’) can be defined in nonmental terms, then functionalism in most of its forms is a version of behaviorism.² Shoemaker (1975), for example, says, “On one construal of it, functionalism in the philosophy of mind is the doctrine that mental, or psychological, terms are, in principle, eliminable in a certain way” (pp. 306-7). Functionalists have tended to treat the mental-state terms in a functional characterization of a mental state quite differently from the input and output terms. Thus in the simplest Turing-machine version of the theory (Putnam, 1967; Block & Fodor, 1972), mental states are identified with the total Turing-machine states, which are themselves implicitly defined by a machine table that explicitly mentions inputs and outputs, described nonmentalistically.

In Lewis’s version of functionalism, mental-state terms are defined by means of a modification of Ramsey’s method, in a way that eliminates essential use of mental terminology from the definitions but does not eliminate input and output terminology. That is, ‘pain’ is defined as synonymous with a definite description containing input and output terms but no mental terminology.³

Furthermore, functionalism in both its machine and nonmachine versions has typically insisted that characterizations of mental states
should contain descriptions of inputs and outputs in *physical* language. Armstrong (1968), for example, says,

We may distinguish between 'physical behaviour', which refers to any merely physical action or passion of the body, and 'behavior proper' which implies relationship to the mind. . . . Now, if in our formula ['state of the person apt for bringing about a certain sort of behaviour'] 'behaviour' were to mean 'behaviour proper', then we would be giving an account of mental concepts in terms of a concept that already presupposes mentality, which would be circular. So it is clear that in our formula, 'behaviour' must mean 'physical behaviour'. (p. 84)

Therefore, functionalism can be said to "tack down" mental states only at the periphery—i.e., through physical, or at least non-mental, specification of inputs and outputs. One major thesis of this chapter is that, because of this feature, functionalism fails to avoid the sort of problem for which it rightly condemns behaviorism. Functionalism, too, is guilty of liberalism, for much the same reasons as behaviorism. Unlike behaviorism, however, functionalism can naturally be altered to avoid liberalism—but only at the cost of falling into an equally ignominious failing.

The failing I speak of is the one that functionalism shows *physicalism* to be guilty of. By 'physicalism', I mean the doctrine that pain, for example, is identical to a physical (or physiological) state. As many philosophers have argued (notably Fodor, 1965, and Putnam, 1966; see also Block & Fodor, 1972), if functionalism is true, physicalism is false. The point is at its clearest with regard to Turing-machine versions of functionalism. Any given abstract Turing machine can be realized by a wide variety of physical devices; indeed, it is plausible that, given any putative correspondence between a Turing-machine state and a configurational physical (or physiological) state, there will be a possible realization of the Turing machine that will provide a counterexample to that correspondence. (See Kalke, 1969; Gendron, 1971; Mucciolo, 1974, for unconvincing arguments to the contrary; see also Kim, 1972.) Therefore, if pain is a functional state, it cannot, for example, be a brain state, because creatures without brains can realize the same Turing machine as creatures with brains.

I must emphasize that the functionalist argument against physicalism does not appeal merely to the fact that one abstract Turing
machine can be realized by systems of different material composition (wood, metal, glass, etc.). To argue this way would be like arguing that temperature cannot be a microphysical magnitude because the same temperature can be had by objects with different microphysical structures (Kim, 1972). Objects with different microphysical structures, e.g., objects made of wood, metal, glass, etc., can have many interesting microphysical properties in common, such as molecular kinetic energy of the same average value. Rather, the functionalist argument against physicalism is that it is difficult to see how there could be a nontrivial first-order (see note 4) physical property in common to all and only the possible physical realizations of a given Turing-machine state. Try to think of a remotely plausible candidate! At the very least, the onus is on those who think such physical properties are conceivable to show us how to conceive of one.

One way of expressing this point is that, according to functionalism, physicalism is a chauvinist theory: it withholds mental properties from systems that in fact have them. In saying mental states are brain states, for example, physicalists unfairly exclude those poor brainless creatures who nonetheless have minds.

A second major point of this paper is that the very argument which functionalism uses to condemn physicalism can be applied equally well against functionalism; indeed, any version of functionalism that avoids liberalism falls, like physicalism, into chauvinism.

I momentarily digress to note that although some philosophers have argued, as stated earlier, that if functionalism is true, physicalism is false, others (Lewis, 1971, Smart, 1971, Armstrong, 1968) have argued, contrariwise, that if functionalism is true, physicalism is true. The argument, briefly stated, is that we can give a functional definition of 'the state) pain' as the occupant of a certain causal role; a brain state has that causal role, so the brain state is identical to pain. But suppose that Martians are functionally equivalent to us, yet have no brain state like any of ours. To avoid contradiction (one thing identical to two different things), holders of the view that functionalism shows physicalism is true have had to retreat to narrower, e.g., species specific identities. They say human pain is one brain state and Martian pain another. To say this is to give up saying what property it is in virtue of which Martians and humans can both
be in pain, and to give up saying what property a (token) state has in virtue of which it is a pain state. (Stating the point in this manner reveals the misguided nature of proposals to identify pain with the disjunction of physical states that have realized or will realize pain in the history of the universe. Such a disjunction would hardly capture what these pain-feeling organisms have in common in virtue of which they all have pain.) We cannot allow that there is a universal, pain, that is identical to a functional state and at the same time claim that pain is one brain state in humans and another brain state in Martians. (This point is also noted in Lycan, 1974 and Wiggins, 1975.) If functionalism is true, physicalists face a dilemma. Either they must abandon the attempt to propose a theory of mental universals such as pain, anger, etc., and talk instead of human pain, Martian pain, etc. (or worse, deny that anything has pain or anger, etc.), or they must claim that mental states are, for example, brain states and thus embrace chauvinism.6

This chapter has three parts. The first argues that functionalism is guilty of liberalism, the second that one way of modifying functionalism to avoid liberalism is to tie it more closely to empirical psychology, and the third that no version of functionalism can avoid both liberalism and chauvinism.

1.1 More about What Functionalism Is

One way of providing some order to the bewildering variety of functionalist theories is to distinguish between those that are couched in terms of a Turing machine and those that are not.

A Turing-machine table lists a finite set of machine-table states, $S_1 \ldots S_n$; inputs, $I_1 \ldots I_m$; and outputs, $O_1 \ldots O_p$. The table specifies a set of conditionals of the form: if the machine is in state S_i and receives input I_j, it emits output O_k and goes into state S_l. That is, given any state and input, the table specifies an output and a next state. Any system with a set of inputs, outputs, and states related in the way specified by the table is described by the table and is a realization of the abstract automaton specified by the table.

To have the power for computing every recursive function, a Turing machine must be able to control its input in certain ways. In standard formulations, the output of a Turing machine is regarded
as having two components. It prints a symbol on a tape, then moves the tape, thus bringing a new symbol into the view of the input reader. For the Turing machine to have full power, the tape must be infinite in at least one direction and movable in both directions. If the machine has no control over the tape, it is a "finite transducer," a rather limited Turing machine. Finite transducers need not be regarded as having tape at all. Those who believe that machine functionalism is true must suppose that just what power automaton we are is a substantive empirical question. If we are "full power" Turing machines, the environment must constitute part of the tape.

Machine functionalists generally consider the machine in question as a probabilistic automaton—a machine whose table specifies conditionals of the following form: if the machine is in S_a and receives I_b, it has a probability p_1 of emitting O_1; p_2 of emitting O_2 . . . p_k of emitting O_k; r_1 of going into S_1; r_2 of going into S_2 . . . r_n of going into S_n. For simplicity, I shall usually consider a deterministic version of the theory.

One very simple version of machine functionalism (Block & Fodor, 1972) states that each system having mental states is described by at least one Turing-machine table of a specifiable sort and that each type of mental state of the system is identical to one of the machine-table states. Consider, for example, the Turing machine described in the accompanying table (cf. Nelson, 1975):

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>nickel input</td>
<td>Emit no output</td>
<td>Emit a Coke</td>
</tr>
<tr>
<td></td>
<td>Go to S_2</td>
<td>Go to S_1</td>
</tr>
<tr>
<td>dime input</td>
<td>Emit a Coke</td>
<td>Emit a Coke & a nickel</td>
</tr>
<tr>
<td></td>
<td>Stay in S_1</td>
<td>Go to S_1</td>
</tr>
</tbody>
</table>

One can get a crude picture of the simple version of machine functionalism by considering the claim that S_1 = dime-desire, and S_2 = nickel-desire. Of course, no functionalist should claim that a Coke machine desires anything. Rather, the simple version of machine functionalism described in the table makes an analogous claim with respect to a much more complex machine table. Notice that machine functionalism specifies inputs and outputs explicitly, in-
ternal states implicitly (Putnam [1967, p. 434] says: "The \(S_i \), to repeat, are specified only implicitly by the description, i.e., specified only by the set of transition probabilities given in the machine table"). To be described by this machine table, a device must accept nickels and dimes as inputs and dispense nickels and Cokes as outputs. But the states \(S_1 \) and \(S_2 \) can have virtually any natures, so long as those natures connect the states to each other and to the inputs and outputs specified in the machine table. All we are told about \(S_1 \) and \(S_2 \) are these relations; thus, in this sense, machine functionalism can be said to reduce mentality to input-output structures. This example should suggest the force of the functionalist argument against physicalism. Try to think of a first-order (see note 4) physical property that can be shared by all (and only) realizations for this machine table!

One can also categorize functionalists in terms of whether they regard functional identities as part of a priori psychology or empirical psychology. (Since this distinction crosscuts the machine/nonmachine distinction, I shall be able to illustrate nonmachine versions of functionalism in what follows.) The a priori functionalists (e.g., Smart, Armstrong, Lewis, Shoemaker) are the heirs of the logical behaviorists. They tend to regard functional analyses as analyses of the meanings of mental terms, whereas the empirical functionalists (e.g., Fodor, Putnam, Harman) regard functional analyses as substantive scientific hypotheses. In what follows, I shall refer to the former view as 'Functionalism' and the latter as 'Psychofunctionalism'. (I shall use 'functionalism' with a lowercase 'f' as neutral between Functionalism and Psychofunctionalism. When distinguishing between Functionalism and Psychofunctionalism, I shall always use capitals.)

Functionalism and Psychofunctionalism and the difference between them can be made clearer in terms of the notion of the Ramsey sentence of a psychological theory. Mental-state terms that appear in a psychological theory can be defined in various ways by means of the Ramsey sentence of the theory (see, p. 269). All functional-state identity theories (and functional-property identity theories) can be understood as defining a set of functional states (or functional properties) by means of the Ramsey sentence of a psycho-
logical theory—with one functional state corresponding to each mental state (or one functional property corresponding to each mental property). The functional state corresponding to pain will be called the 'Ramsey functional correlate' of pain, with respect to the psychological theory. In terms of the notion of a Ramsey functional correlate with respect to a theory, the distinction between Functionalism and Psychofunctionalism can be defined as follows: Functionalism identifies mental state S with S's Ramsey functional correlate with respect to a common-sense psychological theory; Psychofunctionalism identifies S with S's Ramsey functional correlate with respect to a scientific psychological theory.

This difference between Functionalism and Psychofunctionalism gives rise to a difference in specifying inputs and outputs. Functionalists are restricted to specification of inputs and outputs that are plausibly part of common-sense knowledge; Psychofunctionalists are under no such restriction. Although both groups insist on physical—or at least nonmental—specification of inputs and outputs, Functionalists require externally observable classifications (e.g., inputs characterized in terms of objects present in the vicinity of the organism, outputs in terms of movements of body parts). Psychofunctionalists, on the other hand, have the option to specify inputs and outputs in terms of internal parameters, e.g., signals in input and output neurons.

The notion of a Ramsey functional correlate can be defined in a variety of ways. For the purposes of this chapter, it will be useful to adopt one of them. I shall define a notion of Ramsey functional correlate for a mental property being in S, where S is a type of mental state. Let T be a psychological theory of either common-sense or scientific psychology. Reformulate T so that it is a single conjunctive sentence, with all mental-state terms as singular terms—e.g., ‘is angry’ becomes ‘has anger’. Suppose that T, so reformulated, can be written as

\[T(p, s_1 \ldots s_n, i_1 \ldots i_k, o_1 \ldots o_m) \]

where p designates an ideal or representative person; \(s_1 \ldots s_n \) are terms for mental states, \(i_1 \ldots i_k \) for inputs, and \(o_1 \ldots o_m \) for outputs. T may contain generalizations such as
p's being in such and such states and receiving such and such inputs causes p's emitting such and such outputs and going into such and such states.

To get the Ramsey sentence of T, replace p and \(s_1 \ldots s_n\) with variables and prefix an existential quantifier for each variable. A singular term designating the Ramsey functional correlate of being in pain (with respect to T) can be formulated using a property-abstraction operator. Let an expression of the form \(\lambda x Fx\) be a singular term meaning the same as an expression of the form 'the property (or attribute) of being an x such that x is F', i.e., 'F-ness'.

If \(y, x_1 \ldots x_n\) are the variables that replaced \(p, s_1 \ldots s_n\), and \(x_i\) is the variable that replaced 'pain', the Ramsey functional correlate of the property of being in pain (with respect to T) is

\[
\lambda y \exists x_1 \ldots x_n [T (y, x_1 \ldots x_n, i_1 \ldots i_k, o_1 \ldots o_m) \& y \text{ is in } x_i]
\]

Notice that this expression contains input and output terms, but no mental terms (since the mental state terms were replaced by variables). For this reason, this version of functionalism (like machine functionalism) could be said to reduce mentality to input-output structures.

An example: Let T be the theory that a person's having pain causes him to emit a loud noise. The Ramsey sentence of T is

\[
\exists y \exists x (y's \ having \ x \ causes \ y \ to \ emit \ a \ loud \ noise)
\]

and the Ramsey functional correlate of being in pain with respect to T is

\[
\lambda y \exists x (y's \ having \ x \ causes \ y \ to \ emit \ a \ loud \ noise \ & \ y \ is \ in \ x)
\]

This expression (which designates pain with respect to the theory T) contains the output term 'emit a loud noise', but it contains no mental term.

Thus far I have defined the Ramsey functional correlate of (the property of) being in mental state S, and I have characterized functionalism as identifying being in S (for each mental state S) with the Ramsey functional correlate of being in S (with respect to a psychological theory). But I have not yet defined the functional state with which functionalism identifies S. I shall introduce a
state abstraction operator ‘δ’ analogous to the property abstraction operator ‘λ’, introduced above. Let an expression of the form ‘δxFx’ be a singular term meaning the same as an expression of the form ‘the state of x’s being an x such that Fx’, i.e., ‘the state of something’s having F’. If you reexamine the expression that designates the Ramsey functional correlate of being in pain (with respect to T) and substitute ‘δ’ for ‘λ’, you have a singular term designating the Ramsey functional correlate of pain. Functionalism identifies pain with its Ramsey functional correlate (with respect to T).10

FUNCTIONAL EQUIVALENCE

Relations of functional equivalence for all versions of functionalism are relative to specification of inputs and outputs. For both machine and nonmachine versions of functionalism, there are functional-equivalence relations of different strengths. One could regard Turing machines x and y as functionally equivalent (relative to a given specification of inputs and outputs) just in case there is at least one machine table that lists just that set of inputs and outputs and describes both x and y. On the other hand, one could require that every machine table that describes x describes y and vice versa—relative to the given specifications of inputs and outputs.11 One way of being precise—though redundant—is to speak of functional equivalence relative to both a given specification of inputs and outputs and a given machine table.

Similar points apply to nonmachine versions of functionalism. One could regard systems x and y as functionally equivalent (relative to a given specification of inputs and outputs) just in case there is at least one psychological theory that adverts to just that set of inputs and outputs and is true of both x and y. Or one might require that all psychological theories with the set of inputs and outputs that are true of x are also true of y. Again, one way of being precise is to relativize to both inputs and outputs and to psychological theory.

In what follows, I shall sometimes speak of x and y as functionally equivalent (with respect to certain inputs and outputs) without specifying a particular psychological theory or Turing-machine table. What I shall mean is that x and y are functionally equivalent (with respect to the given inputs and outputs) with respect to at
least one reasonably adequate, true psychological theory (either common-sense or empirical, depending on whether Functionalism or Psychofunctionalism is in question) or with respect to at least one reasonably adequate machine table that describes both x and y. Admittedly, such notions of functional equivalence are quite vague. Unfortunately, I see no way of avoiding this vagueness. Functionalists should be consoled, however, by the fact that their chief rival, physicalism, seems beset by an analogous vagueness. As far as I know, no one has ever come up with a remotely satisfactory way of saying what a physical state or property is without quantifying over unknown, true physical theories (e.g., a physical property is a property expressed by a predicate of some true physical theory); nor has anyone been able to say what it is for x and y to be physical states of the same type without quantifying over reasonably adequate, but unknown, true physical theories.

In discussing the various versions of functionalism, I have also been rather vague about what psychology is supposed to be psychology of. Presumably, some animals, e.g., dogs, are capable of many of the same mental states as humans, e.g., hunger, thirst, other desires, and some beliefs. Thus, if functionalism is true, we must suppose that there is a psychological theory that applies to people and some animals that says what it is in virtue of which both the animals and the people have beliefs, desires, etc. On the other hand, there are mental states people can have that dogs presumably cannot. Further, there may be mental states that some persons can have but others cannot. Some of us can suffer weltschmerz, whereas others, perhaps, cannot. It is possible that there are no basic psychological differences between dogs, persons who can have weltschmerz, persons who cannot, etc. Perhaps the gross behavioral differences are due to different values of the same parameters in a single psychological theory that covers all the aforementioned creatures. An analogy: the same theory of nuclear physics covers both reactors and bombs, even though there is a gross difference in their behavior. This is due to different values of a single set of parameters that determine whether or not the reaction is controlled. Perhaps parameters such as information-processing capacity or memory space play the same role in psychology. But this is unlikely for scientific psychology, and it surely is not true for the common-sense psychological
theories Functionalism appeals to. Thus, it seems likely that both
Functionalism and Psychofunctionalism require psychological the-
ories of different degrees of generality or level of abstraction—one
for humans who can have \textit{weltschmerz}, one for all humans, one for
dogs and humans, etc. If so, different mental states may be identical
to functional states at different abstractness levels. The same point
applies to functional-equivalence relations. Two creatures may be
functionally equivalent relative to one level of abstractness of psy-
chological theory, but not with respect to another.

The Ramsey functional-correlate characterization of functional-
ism captures relativities to both abstractness level and input-output
specification. According to both Functionalism and Psychofunc-
tionalism, each functional state is identical to its Ramsey functional
correlate with respect to a psychological theory. The intended level
of abstractness is automatically captured in the level of detail present
in the theory. The input and output specifications are just those
mentioned. For example, suppose the Ramsey functional correlate
of pain with respect to the theory is \(\delta y \exists x \) (y’s being pricked by a
pin causes y to be in x \\& y’s being in x causes y to scream \\& y is in
x). The input and output specifications are ‘pin pricks’ and ‘scream-
ing’, and the level of abstractness is determined by those two causal
relations being the only ones mentioned.

Until Section 3.1, I shall ignore considerations concerning level of
abstractness. When I say that two systems are “functionally equiva-
ient,” I shall assume that my “reasonable adequacy” condition en-
sures an appropriate level of concreteness.

(The reader can skip to page 277 without loss of continuity.)

I mentioned two respects in which Functionalism and Psycho-
functionalism differ. First, Functionalism identifies pain with its
Ramsey functional correlate with respect to a common-sense psy-
chological theory, and Psychofunctionalism identifies pain with its
Ramsey functional correlate with respect to a scientific psychological
theory. Second, Functionalism requires common-sense specifi-
cation of inputs and outputs, and Psychofunctionalism has the op-
tion of using empirical-theory construction in specifying inputs and
outputs so as to draw the line between the inside and outside of the
organism in a theoretically principled way.

I shall say a bit more about the Psychofunctionalism/Functional-
ism distinction. According to the preceding characterization, Psychofunctionalism and Functionalism are theory relative. That is, we are told not what pain is, but, rather, what pain is \textit{with respect to this or that theory}. But Psychofunctionalism can be defined as the doctrine that mental states are constituted by causal relations among whatever psychological events, states, processes, and other entities—as well as inputs and outputs—actually obtain in us in whatever ways those entities are actually causally related to one another. Therefore, if current theories of psychological processes are correct in advertsing to storage mechanisms, list searchers, item comparators, and so forth, Psychofunctionalism will identify mental states with causal structures that involve storage, comparing, and searching processes as well as inputs, outputs, and other mental states.

Psychofunctional equivalence can be similarly characterized without overt relativizing to theory. Let us distinguish between weak and strong equivalence (Fodor, 1968a). Assume we have agreed on some descriptions of inputs and outputs. I shall say that organisms x and y are weakly or behaviorally equivalent if and only if they have the same output for any input or sequence of inputs. If x and y are weakly equivalent, each is a weak simulation of the other. I shall say x and y are \textit{strongly} equivalent relative to some branch of science if and only if (1) x and y are weakly equivalent, and (2) that branch of science has in its domain processes that mediate inputs and outputs, and x's and y's inputs and outputs are mediated by the same processes. If x and y are strongly equivalent, they are strong simulations of each other.

We can now give a characterization of a Psychofunctional equivalence relation that is not overtly theory relative. This Psychofunctional-equivalence relation is strong equivalence with respect to psychology. (Note that 'psychology' here denotes a branch of science, not a particular theory in that branch.)

This Psychofunctional equivalence relation differs in a number of respects from those described earlier. For example, for the sort of equivalence relation described earlier, equivalent systems need not have any common output if they share a given sequence of inputs. In machine terms, the equivalence relations described earlier require only that equivalent systems have a common machine table (of a certain type); the current equivalence relation requires, in addition,
that equivalent systems be in the same state of the machine table. This difference can be eliminated by more complex formulations.

Ignoring differences between Functionalism and Psychofunctionalism in their characterizations of inputs and outputs, we can give a very crude account of the Functionalism/Psychofunctionalism distinction as follows: Functionalism identifies mental states with causal structures involving conscious mental states, inputs, and outputs; Psychofunctionalism identifies mental states with the same causal structures, elaborated to include causal relations to unconscious mental entities as well. That is, the causal relations adverted to by Functionalism are a subset of those adverted to by Psychofunctionalism. Thus, weak or behavioral equivalence, Functional equivalence, and Psychofunctional equivalence form a hierarchy. All Psychofunctionally equivalent systems are Functionally equivalent, and all Functionally equivalent systems are weakly or behaviorally equivalent.

Although the characteristics of Psychofunctionalism and Psychofunctional equivalence just given are not overtly theory relative, they have the same vagueness problems as the characterizations given earlier. I pointed out that the Ramsey functional-correlate characterizations suffer from vagueness about level of abstractness of psychological theory — e.g., are the psychological theories to cover only humans who are capable of weltschmerz, all humans, all mammals, or what? The characterization of Psychofunctionalism just given allows a similar question: what is to count as a psychological entity or process? If the answer is an entity in the domain of some true psychological theory, we have introduced relativity to theory. Similar points apply to the identification of psychofunctional equivalence, with strong equivalence with respect to psychology.

Appeal to unknown, true psychological theories introduces another kind of vagueness problem. We can allocate current theories among branches of science by appealing to concepts or vocabulary currently distinctive to those branches. But we cannot timelessly distinguish among branches of science by appealing to their distinctive concepts or vocabulary, because we have no idea what concepts and vocabulary the future will bring. If we did know, we would more or less have future theories now. Worse still, branches of science have a habit of coalescing and splitting, so we cannot know whether
the science of the future will countenance anything at all like psychology as a branch of science.

One consequence of this vagueness is that no definite answer can be given to the question, Does Psychofunctionalism as I have described it characterize mental states partly in terms of their relations to neurological entities? I think the best anyone can say is: at the moment, it seems not. Psychology and neurophysiology seem to be separate branches of science. Of course, it is clear that one must appeal to neurophysiology to explain some psychological phenomena, e.g., how being hit on the head causes loss of language ability. However, it seems as if this should be thought of as "descending" to a lower level in the way evolutionary biology appeals to physics (e.g., cosmic rays hitting genes) to partially explain mutation.

If correct, the characterization that I have given of functionalism as being theory relative should be a source of difficulty for the functionalist who is also a realist. Since psychological theories can differ considerably—even if we restrict our attention to true theories—the functionalist would identify pain with one state with respect to one theory and another state with respect to another theory. But how can pain be identical to nonidentical states? Notice that this problem is not avoided by construing functionalism as a theory of type-identity conditions on mental states—e.g., (x) (x is a pain ≡ x is a token of functional state S)—rather than as an identity theory—e.g., pain = S. For mental state token a can be type identical to b with respect to one theory and to c with respect to another, even though b is not type identical to c on either theory. It makes no more sense to suppose that a is type identical to two nontype identical states than to suppose pain is identical to two nonidentical states.

I see only two avenues of escape that have even a modicum of plausibility. One would be to argue that true psychological theories simply do not differ in ways that create embarrassment for realist functionalists. Certain views about the varieties of true psychological theories may be conjoined with those about identity conditions for states in order to argue that the Ramsey functional correlates of pain with respect to the true psychological theories are not different from one another. The second approach is to argue that there is only one true psychological theory (or set of equivalent theories)
that provides the *correct* Ramsey functional correlate of pain. According to Lewis (1971, 1972) and Shoemaker (1975), the theory that contains all the truths of meaning analysis of psychological terms has this property. I argue against their claim in Section 1.6.

One final preliminary point: I have given the misleading impression that functionalism identifies *all* mental states with functional states. Such a version of functionalism is obviously far too strong. Let X be a newly created cell-for-cell duplicate of you (which, of course, is functionally equivalent to you). Perhaps you remember being bar-mitzvahed. But X does not remember being bar-mitzvahed, since X never was bar-mitzvahed. Indeed, something can be functionally equivalent to you but fail to know what you know, or *verb*, what you *verb*, for a wide variety of "success" verbs. Worse still, if Putnam (1975b) is right in saying that "meanings are not in the head," systems functionally equivalent to you may, for similar reasons, fail to have many of your other propositional attitudes. Suppose you believe water is wet. According to plausible arguments advanced by Putnam and Kripke, a condition for the possibility of your believing water is wet is a certain kind of causal connection between you and water. Your "twin" on Twin Earth, who is connected in a similar way to XYZ rather than H2O, would not believe water is wet.

If functionalism is to be defended, it must be construed as applying only to a subclass of mental states, those "narrow" mental states such that truth conditions for their application are in some sense "within the person." But even assuming that a notion of narrowness of psychological state can be satisfactorily formulated, the interest of functionalism may be diminished by this restriction. I mention this problem only to set it aside.

I shall take functionalism to be a doctrine about all "narrow" mental states.

1.2 Homunculi-Headed Robots

In this section I shall describe a class of devices that embarrass all versions of functionalism in that they indicate functionalism is guilty of liberalism—classifying systems that lack mentality as having mentality.

Consider the simple version of machine functionalism already de-
scribed. It says that each system having mental states is described by at least one Turing-machine table of a certain kind, and each mental state of the system is identical to one of the machine-table states specified by the machine table. I shall consider inputs and outputs to be specified by descriptions of neural impulses in sense organs and motor-output neurons. This assumption should not be regarded as restricting what will be said to Psychofunctionalism rather than Functionalism. As already mentioned, every version of functionalism assumes some specification of inputs and outputs. A Functionalist specification would do as well for the purposes of what follows.

Imagine a body externally like a human body, say yours, but internally quite different. The neurons from sensory organs are connected to a bank of lights in a hollow cavity in the head. A set of buttons connects to the motor-output neurons. Inside the cavity resides a group of little men. Each has a very simple task: to implement a “square” of a reasonably adequate machine table that describes you. On one wall is a bulletin board on which is posted a state card, i.e., a card that bears a symbol designating one of the states specified in the machine table. Here is what the little men do: Suppose the posted card has a ‘G’ on it. This alerts the little men who implement G squares—‘G-men’ they call themselves. Suppose the light representing input I_{17} goes on. One of the G-men has the following as his sole task: when the card reads ‘G’ and the I_{17} light goes on, he presses output button O_{191} and changes the state card to ‘M’. This G-man is called upon to exercise his task only rarely. In spite of the low level of intelligence required of each little man, the system as a whole manages to simulate you because the functional organization they have been trained to realize is yours. A Turing machine can be represented as a finite set of quadruples (or quintuples, if the output is divided into two parts)—current state, current input; next state, next output. Each little man has the task corresponding to a single quadruple. Through the efforts of the little men, the system realizes the same (reasonably adequate) machine table as you do and is thus functionally equivalent to you.

I shall describe a version of the homunculi-headed simulation, which is more clearly nomologically possible. How many homunculi are required? Perhaps a billion are enough; after all, there are only about a billion neurons in the brain.
Suppose we convert the government of China to functionalism, and we convince its officials that it would enormously enhance their international prestige to realize a human mind for an hour. We provide each of the billion people in China (I chose China because it has a billion inhabitants.) with a specially designed two-way radio that connects them in the appropriate way to other persons and to the artificial body mentioned in the previous example. We replace the little men with a radio transmitter and receiver connected to the input and output neurons. Instead of a bulletin board, we arrange to have letters displayed on a series of satellites placed so that they can be seen from anywhere in China. Surely such a system is not physically impossible. It could be functionally equivalent to you for a short time, say an hour.

"But," you may object, "how could something be functionally equivalent to me for an hour? Doesn't my functional organization determine, say, how I would react to doing nothing for a week but reading Reader's Digest?" Remember that a machine table specifies a set of conditionals of the form: if the machine is in S_i and receives input I_j, it emits output O_k and goes into S_l. Any system that has a set of inputs, outputs, and states related in the way described realizes that machine table, even if it exists for only an instant. For the hour the Chinese system is "on," it does have a set of inputs, outputs, and states of which such conditionals are true. Whatever the initial state, the system will respond in whatever way the machine table directs. This is how any computer realizes the machine table it realizes.

Of course, there are signals the system would respond to that you would not respond to, e.g., massive radio interference or a flood of the Yangtze River. Such events might cause a malfunction, scotching the simulation, just as a bomb in a computer can make it fail to realize the machine table it was built to realize. But just as the computer without the bomb can realize the machine table, the system consisting of the people and artificial body can realize the machine table so long as there are no catastrophic interferences, e.g., floods, etc.

"But," someone may object, "there is a difference between a bomb in a computer and a bomb in the Chinese system, for in the case of the latter (unlike the former), inputs as specified in the ma-
chine table can be the cause of the malfunction. Unusual neural activity in the sense organs of residents of Chungking Province caused by a bomb or by a flood of the Yangtze can cause the system to go haywire."

Reply: the person who says what system he or she is talking about gets to say what counts as inputs and outputs. I count as inputs and outputs only neural activity in the artificial body connected by radio to the people of China. Neural signals in the people of Chungking count no more as inputs to this system than input tape jammed by a saboteur between the relay contacts in the innards of a computer count as an input to the computer.

Of course, the object consisting of the people of China + the artificial body has other Turing machine descriptions under which neural signals in the inhabitants of Chungking would count as inputs. Such a new system (i.e., the object under such a new Turing-machine description) would not be functionally equivalent to you. Likewise, any commercial computer can be redescribed in a way that allows tape jammed into its innards to count as inputs. In describing an object as a Turing machine, one draws a line between the inside and the outside. (If we count only neural impulses as inputs and outputs, we draw that line inside the body; if we count only peripheral stimulations as inputs and only bodily movements as outputs, we draw that line at the skin.) In describing the Chinese system as a Turing machine, I have drawn the line in such a way that it satisfies a certain type of functional description—one that you also satisfy, and one that, according to functionalism, justifies attributions of mentality. Functionalism does not claim that every mental system has a machine table of a sort that justifies attributions of mentality with respect to every specification of inputs and outputs, but rather, only with respect to some specification.

Objection: The Chinese system would work too slowly. The kind of events and processes with which we normally have contact would pass by far too quickly for the system to detect them. Thus, we would be unable to converse with it, play bridge with it, etc.13

Reply: It is hard to see why the system’s time scale should matter. What reason is there to believe that your mental operations could not be very much slowed down, yet remain mental operations? Is it really contradictory or nonsensical to suppose we could meet a
race of intelligent beings with whom we could communicate only by devices such as time-lapse photography. When we observe these creatures, they seem almost inanimate. But when we view the time-lapse movies, we see them conversing with one another. Indeed, we find they are saying that the only way they can make any sense of us is by viewing movies greatly slowed down. To take time scale as all important seems crudely behavioristic. Further, even if the time-scale objection is right, I can elude it by retreating to the point that a homunculus-head that works in normal time is metaphysically possible, even if not nomologically possible. Metaphysical possibility is all my argument requires (see Section 1.3).

What makes the homunculi-headed system (count the two systems as variants of a single system) just described a prima facie counterexample to (machine) functionalism is that there is prima facie doubt whether it has any mental states at all—especially whether it has what philosophers have variously called “qualitative states,” “raw feels,” or “immediate phenomenological qualities.” (You ask: What is it that philosophers have called qualitative states? I answer, only half in jest: As Louis Armstrong said when asked what jazz is, “If you got to ask, you ain’t never gonna get to know.”) In Nagel’s terms (1974), there is a prima facie doubt whether there is anything which it is like to be the homunculi-headed system.

The force of the prima facie counterexample can be made clearer as follows: Machine functionalism says that each mental state is identical to a machine-table state. For example, a particular qualitative state, Q, is identical to a machine-table state, S_Q. But if there is nothing it is like to be the homunculi-headed system, it cannot be in Q even when it is in S_Q. Thus, if there is prima facie doubt about the homunculi-headed system’s mentality, there is prima facie doubt that Q = S_Q, i.e., doubt that the kind of functionalism under consideration is true.

Call this argument the Absent Qualia Argument.

So there is prima facie doubt that machine functionalism is true. So what? After all, prima facie doubt is only prima facie. Indeed, appeals to intuition of this sort are notoriously fallible. I shall not rest on this appeal to intuition. Rather, I shall argue that the intuition that the homunculi-headed simulation described above lacks mentality (or at least qualia) has at least in part a rational basis, and that this rational basis provides a good reason for doubting
that Functionalism (and to a lesser degree Psychofunctionalism) is true. I shall consider this line of argument in Section 1.6. Before I do that, however, I must tie up a number of loose ends; I shall sketch homunculi-headed, prima-facie counterexamples for other versions of functionalism and defend, from a few obvious objections, what I have said so far.

(The remainder of this section, and section 1.3 and 1.4, can be omitted without loss of continuity.)

The homunculi-headed system is a prima facie counterexample to one version of functionalism. In the remainder of this section, I shall briefly sketch a few other versions of functionalism and argue that this or similar examples also provide counterexamples to those versions of functionalism. Every version of functionalism I know of seems subject to this type of difficulty. Indeed, this problem seems so close to the core of functionalism that I would be tempted to regard a doctrine not subject to it as ipso facto not a version of functionalism.

The version of functionalism just discussed (mental states are machine-table states) is subject to many obvious difficulties. If state \(M = \text{state } P \), then someone has \(M \) if and only if he or she has \(P \). But mental and machine-table states fail to satisfy this basic condition, as Fodor and I pointed out (Block & Fodor, 1972).

For example, people are often in more than one psychological state at a time, e.g., believing that \(P \) and desiring that \(G \). But a Turing machine can be in only one machine-table state at a time. Lycan (1974) argues against Fodor’s and my objection. He says the problem is dissolvable by appeal to the distinction between particular, physical Turing machines and the abstract Turing machine specified by a given description. One abstract machine can be realized by many physical machines, and one physical machine can be the realization of many abstract machines. Lycan says we can identify the \(n \) mental states a person happens to be in at one time with machine-table states of \(n \) abstract automata that the person simultaneously realizes. But this will not do, for a Functionalist should be able to explain how a number of simultaneous mental states jointly produce an output, e.g., when a belief that action \(A \) will yield goal \(G \), plus a desire for \(G \) jointly cause \(A \). How could this causal relation be captured if the belief and the desire are identi-
fied with states of different abstract automata that the person simultaneously realizes?

The "one-state-at-a-time" problem can be avoided by a natural reformulation of the machine-table state identity theory. Each machine-table state is identified not with a single mental state, but with a conjunction of mental states, e.g., believing that P and hoping that H and desiring that G Call each of the mental states in such a conjunction the "elements" of the machine-table state. Then, each mental state is identical to the disjunction of the machine-table states of which it is an element. This version of Functionalism is ultimately unsatisfactory, basically because it has no resources for appropriately handling the content relations among mental states, e.g., the relation between the belief that P and the belief that (P or Q).

Fodor and I (1972) raised a number of such criticisms. We concluded that Turing-machine functionalism could probably avoid such difficulties, but only at the cost of weakening the theory considerably. Turing-machine functionalism seemed forced to abandon the idea that mental states could be identified with machine-table states or even states definable in terms of just machine-table states, such as the disjunction of states already suggested. It seemed, rather, that mental states would have have to be identified instead with computational states of a Turing machine—that is, states definable in terms of table states and states of the tape of a Turing machine.

However, the move from machine-table state functionalism to computational-state functionalism is of no use in avoiding the Absent Qualia Argument. Whatever Turing machine it is whose computational states are supposed to be identical to your mental states will have a homunculi-headed realization of the sort described earlier, i.e., a realization whose mental states are subject to prima facie doubt. Therefore, if a qualitative state, Q, is supposed to be identical to a computational state, C_Q, there will be prima facie doubt about whether the homunculi-headed system is in Q even if it is in C_Q, and hence prima facie doubt that Q = C_Q.

Now let us turn briefly to a version of functionalism that is not framed in terms of the notion of a Turing machine. Like machine functionalists, nonmachine functionalists emphasize that characterizations of mental states can be given in entirely nonmental—
indeed, they often say physical—terminology. The Ramsey functional-correlate expression designating pain (p. 270) contains input and output terms but not mental terms. Thus, nonmachine versions, like machine versions, can be described as "tacking down" mental states only at the periphery. That is, according to both versions of functionalism, something can be functionally equivalent to you if it has a set of states, of whatever nature, that are causally related to one another and to inputs and outputs in the appropriate way.

Without a more precise specification of nonmachine functionalism (e.g., a specification of an actual psychological theory of either the Functionalist or Psychofunctionalist varieties), it would be hard to prove that nonmachine versions of functionalism are subject to the kind of prima facie counterexample described earlier. But this does seem fairly obviously the case. In this regard, the major difference between machine and nonmachine versions of functionalism is that we cannot assume that the homunculi-headed counterexample for nonmachine functionalism is "discretized" in the way a Turing machine is. In our new homunculi-headed device, we may have to allow for a continuous range of values of input and output parameters, whereas Turing machines have a finite set of inputs and outputs. Further, Turing-machine descriptions assume a fixed time interval, t, such that inputs occur and instructions are executed every t seconds ($t = 10$ nanoseconds in an IBM 370). Turing machines click, whereas our homunculi-headed device may creep. However, it is not at all obvious that this makes any difference. The input signals in the mechanical body can be changed from on-off lights to continuously varying lights; continuously variable potentiometers can be substituted for the output buttons. We may suppose that each of the little men in the body carries a little book that maps out your functional organization. The little men designate states of themselves and/or their props to correspond to each of your mental states. For example, your being in pain might correspond to a certain little man writing "pain" on a blackboard. The intensity of the pain might be indicated by the (continuously variable) color of the chalk. Having studied his book, the little man knows what inputs and other mental states cause your pains. He keeps an eye open for the states of his colleagues and the input lights that correspond to those conditions. Little men responsible for simulating states that are contin-
gent on pain keep their eye on the blackboard, taking the appropriate configurations of ‘pain’ written on the board + input lights and actions of other men as signals to do what they have designated to correspond to states caused by pain. If you, a big man, have an infinite number of possible mental states, the same can be assumed of the little men. Thus, it should be possible for the simulation to have an infinite number of possible “mental” states.

One difference between this simulation and the one described earlier is that these little men need more intelligence to do their jobs. But that is all to the good as far as the Absent Qualia Argument is concerned. The more intelligence exercised by the little men in simulating you, the less inclined we are to ascribe to the simulation the mental properties they are simulating.

1.3 What Kind of Possibility Does the Absent Qualia Argument Appeal to?

According to functionalism, each mental state, e.g., Q, is identical to a functional state, e.g., S_Q. The Absent Qualia Argument argues that there is a possible system that has S_Q but whose possession of Q is subject to prima facie doubt, and thus there is prima facie doubt that $Q = S_Q$. What notion of possibility does the Absent Qualia Argument appeal to? And what is the basis for the assumption that if $Q = S_Q$, it is not possible for something to have S_Q without Q?

Let us take the notion of possibility to be nomological possibility. And let us restrict our attention to identity statements of the form $\forall a = \beta$, where a and β are rigid designators. It is hard to conceive of a mildly plausible criterion of identity for properties (or for types of states) that allows both that $F = G$ and that it is nomologically possible for something to have or be in F but not in G. As Kripke (1972) has shown, true identities are necessarily true. Thus, if $F = G$, there is no possible world and hence nonomologically possible world in which $F \neq G$; hence, there is no nomologically possible world in which something is in (or has) F but is not in (or lacks) G.

I conclude that on the nomological reading of ‘possible’, the Absent Qualia Argument is valid. Further, if the Chinese system described earlier is nomologically possible, and if there is prima facie doubt about its qualia, the argument is sound. However, even if such a homunculi-headed simulation is not nomologically possible,
it is surely metaphysically possible. Therefore, assuming there is prima facie doubt about the qualia of the homunculi-headed simulations, understanding 'possible' as 'metaphysically possible' ensures the soundness of the Absent Qualia Argument, while retaining validity. Kripke has shown that true identities are metaphysically necessary. Thus, if $Q = S_q$, then (assuming ‘Q’ and ‘S_q’ are rigid designators) it is necessary that $Q = S_q$. And it is necessary that something has Q just in case it has S_q. Since there is a possible object (a homunculi-headed simulation) that has S_q but whose possession of Q is subject to prima facie doubt, there is prima facie doubt about whether $Q = S_q$.

Kripke's arguments against materialism (based on his principle that identities are necessary) are subject to a number of difficulties. If the Absent Qualia Argument is forced to rely on Kripke's principle (i.e., if homunculi-headed simulations are not nomologically possible), is the Absent Qualia Argument subject to the same difficulties as Kripke's argument against materialism? In the remainder of this section I shall argue that none of the serious difficulties that beset Kripke's arguments against materialism besets the Absent Qualia Argument.

Kripke argues (against an opponent who says pain is stimulation of c-fibers) that we can conceive of a possible world in which c-fiber stimulation occurs in the absence of pain and that we can also conceive of a possible world in which pain occurs in the absence of c-fiber stimulation. So far, so good: but how do we judge the truth of claims to conceive of such possible worlds? (Notice that I am using 'conceive' such that if anyone can conceive of a possible world in which such and such obtains, then there is such a possible world. 'Imagine' has no such implication.) Kripke provides us with a way of ruling out false conceivability claims. Suppose someone, call him 'Epistemagine', claims he can conceive of a world which contains heat but no corresponding molecular agitation. Kripke argues that what Epistemagine is really imagining is being in the epistemic situation we would have been in had we discovered that heat phenomena (e.g., our sensation of heat) were caused by something other than molecular agitation, say, y-radiation. Thus, what Epistemagine is really conceiving is a possible world in which the sensation that heat causes in the actual world is caused by something else, y-radiation.
If heat exists in the world at all, it is molecular agitation. This ploy
is Kripke’s major tool for ruling out false conceivability claims. Does
this tool serve to rule out Kripke’s own claim to conceive of a world
with pain but no c-fiber stimulation? No, Kripke says, because a
possible world in which I am in the epistemic situation I am in when
I am in pain in the real world is a possible world in which I have pain.
Pain and its epistemic counterpart (the experience of pain) are not
different, whereas heat and the sensation of heat are different. But
Kripke’s reply is inadequate because c-fiber stimulation and its epi-
stemic counterpart are different. (Pointed out independently by
Boyd & Putnam, in conversation: see Boyd, forthcoming.) Kripke’s
ability to imagine pain without c-fiber stimulation can be ascribed
not to the real conceivability of a possible world with pain but no
c-fiber stimulation, but rather to the imaginability of the epistemic
situation we would have been in had we discovered that pain is not
correlated with c-fiber stimulation. In other words, the world Kripke
imagines may be one where his pain is c-fiber stimulation, but he
fails to be aware of it, e.g., because his cerebroscope does not work
or because c-fibers are invisible, or they look like d-fibers under
certain conditions, or for some such reason.

The matter does not end here, however, for Kripke can reply to
the Boyd-Putnam point that there is a disanalogy between (a) the
epistemic situation when one’s cerebroscope does not work or c-
fibers look like d-fibers, etc., and (b) the epistemic situation when
y-radiation causes the sensation that in the real world is caused by
molecular agitation—namely, in case a but not b one is imagining
an epistemic situation in which one is being misled. Does this dif-
ference make a difference? How are we to decide? Kripke might also
reply to the Boyd-Putnam point that he can conceive of a possible
world in which he has a pain and a working cerebroscope shows no
c-fiber stimulation; or to put the same point somewhat differently,
he can conceive of a pain with no corresponding c-fiber stimulation,
without imagining any epistemic situation at all. There is something
attractive about this line of thought, but to accept it is to abandon
Kripke’s tool for ruling out false conceivability claims; and without
this or some other such tool, there seems no remotely objective way
to settle claims that a certain sort of world is or is not possible.

The dispute just sketched seems to me to end in a stalemate. But
I do not inherit Kripke's difficulties. Rather than simply asserting that there is a possible world which contains a present functional state and an absent quale, I have given reason to think there is such a world. I have told a story suggesting that something can be functionally equivalent to you, yet there be prima facie doubt about its qualia. In other words, I did not ask you to imagine two things (a present functional state and an absent quale); I asked you to imagine one thing (a homunculi-headed system), then I claimed that what you had already imagined was such that there is prima facie doubt about its qualia.

Another difference between Kripke's attack on materialism and the Absent Qualia Argument is that Kripke's attack is meant to apply to token materialism as well as type materialism, whereas the Absent Qualia Argument is addressed only to type functionalism. That is, a variant of Kripke's argument is supposed to apply against the claim that there is even a single datable individual pain that is a c-fiber stimulation. On the other hand, it is perfectly compatible with the Absent Qualia Argument that all token qualitative states are token functional states. Kripke argues against token materialism, but I do not argue against token functionalism. (Of course, if the Absent Qualia Argument is correct, it is prima facie doubtful that any of the token functional states in homunculi-headed robots are token qualitative states.)

Kripke's argument against token materialism proceeds from the claim that he can conceive of a possible world that contains this very c-fiber stimulation but not pain. If this very pain, denote it rigidly by 'Philbert,' were identical to this very c-fiber stimulation, call it 'Sam,' there would be no such possible world. "But," it might be objected, "the world you have conceived of may be a world in which Philbert exists (and is identical to Sam) but has no qualitative content" (Feldman, 1973). In reply to the (foreseen) objection, Kripke, in effect, invokes the claim that Philbert (and every other pain) necessarily has qualitative content, that is

(e) (e is a pain ⊃ □ (e has qualitative content))

(Note that Kripke does not need this claim in the argument against type materialism. There he requires instead: □ (e) (e is a pain ≡ e has a certain qualitative content). This claim allows Kripke to mount
an even simpler attack on token materialism, based on the indiscernibility of identicals: viz, each pain has a property (necessarily having qualitative content) which each c-fiber stimulation lacks. Hence, no pain is a c-fiber stimulation. But how are we to ascertain that Kripke is right when he says that each c-fiber stimulation lacks the property of necessarily having qualitative content? By ascertaining whether we can conceive of a possible world that contains a given c-fiber stimulation, but not pain? This task would involve us in just the morass depicted on p. 287 above. Indeed, how are we to ascertain that Kripke is right in saying that each pain has qualitative content in all possible worlds? Once again, the argument seems to turn on an appeal to intuitions that we have no moderately objective means of evaluating.

Again, I do not inherit Kripke's difficulties. Nothing in the Absent Qualia Argument dictates anything controversial about the essential qualitativeness of any particular qualitative or functional state.

1.4 What If I Turned Out to Have Little Men in My Head?

Before I go any further, I shall briefly discuss a difficulty for my claim that there is prima facie doubt about the qualia of homunculi-headed realizations of human functional organization. It might be objected, "What if you turned out to be one?" Let us suppose that, to my surprise, X-rays reveal that inside my head are thousands of tiny, trained fleas, each of which has been taught (perhaps by a joint subcommittee of the American Philosophical Association and the American Psychological Association empowered to investigate absent qualia) to implement a square in the appropriate machine table.

Now there is a crucial issue relevant to this difficulty which philosophers are far from agreeing on (and about which I confess I cannot make up my mind): Do I know on the basis of my "privileged access" that I do not have utterly absent qualia, no matter what turns out to be inside my head? Do I know there is something it is like to be me, even if I am a flea head? Fortunately, my vacillation on this issue is of no consequence, for either answer is compatible with the Absent Qualia Argument's assumption that there is doubt about the qualia of homunculi-headed folks.
Suppose the answer is no. It is not the case that I know there is something it is like to be me even if I am a flea-head. Then I should admit that my qualia would be in (prima facie) doubt if (God forbid) I turned out to have fleas in my head. Likewise for the qualia of all the other homunculi-headed folk. So far, so good.

Suppose, on the other hand, that my privileged access does give me knowledge that I have qualia. No matter what turns out to be inside my head, my states have qualitative content. There is something it is like to be me. Then if I turn out to have fleas in my head, at least one homunculi-head turns out to have qualia. But this would not challenge my claim that the qualia of homunculi-infested simulations is in doubt. Since I do, in fact, have qualia, supposing I have fleas inside my head is supposing someone with fleas inside his head has qualia. But this supposition that a homunculi-head has qualia is just the sort of supposition my position doubts. Using such an example to argue against my position is like twitting a man who doubts there is a God by asking what he would say if he turned out to be God. Both arguments against the doubter beg the question against the doubter by hypothesizing a situation which the doubter admits is logically possible, but doubts is actual. A doubt that there is a God entails a doubt that I am God. Similarly, (given that I do have qualia) a doubt that flea heads have qualia entails a doubt that I am a flea head.

1.5 Putnam’s Proposal

One way functionalists can try to deal with the problem posed by the homunculi-headed counterexamples is by the ad hoc device of stipulating them away. For example, a functionalist might stipulate that two systems cannot be functionally equivalent if one contains parts with functional organizations characteristic of sentient beings and the other does not. In his article hypothesizing that pain is a functional state, Putnam stipulated that “no organism capable of feeling pain possesses a decomposition into parts which separately possess Descriptions” (as the sort of Turing machine which can be in the functional state Putnam identifies with pain). The purpose of this condition is “to rule out such ‘organisms’ (if they count as such) as swarms of bees as single pain feelers” (Putnam, 1967, pp. 434-439).
One way of filling out Putnam's requirement would be: a pain
feeling organism cannot possess a decomposition into parts all of
which have a functional organization characteristic of sentient be-
ings. But this would not rule out my homunculi-headed example,
since it has nonsentient parts, such as the mechanical body and sense
organs. It will not do to go to the opposite extreme and require
that no proper parts be sentient. Otherwise pregnant women and
people with sentient parasites will fail to count as pain-feeling organ-
isms. What seems to be important to examples like the homunculi-
headed simulation I have described is that the sentient beings play
a crucial role in giving the thing its functional organization. This
suggests a version of Putnam's proposal which requires that a pain-
feeling organism has a certain functional organization and that it
has no parts which (1) themselves possess that sort of functional
organization and also (2) play a crucial role in giving the whole sys-
tem its functional organization.

Although this proposal involves the vague notion "crucial role,"
it is precise enough for us to see it will not do. Suppose there is a
part of the universe that contains matter quite different from ours,
matter that is infinitely divisible. In this part of the universe, there
are intelligent creatures of many sizes, even humanlike creatures
much smaller than our elementary particles. In an intergalactic ex-
pedition, these people discover the existence of our type of matter.
For reasons known only to them, they decide to devote the next
few hundred years to creating out of their matter substances with
the chemical and physical characteristics (except at the subelement-
tary particle level) of our elements. They build hordes of space ships
of different varieties about the sizes of our electrons, protons, and
other elementary particles, and fly the ships in such a way as to
mimic the behavior of these elementary particles. The ships also
contain generators to produce the type of radiation elementary par-
ticles give off. Each ship has a staff of experts on the nature of our
elementary particles. They do this to produce huge (by our stand-
ards) masses of substances with the chemical and physical charac-
teristics of oxygen, carbon, etc. Shortly after they accomplish this,
you go off on an expedition to that part of the universe, and dis-
cover the "oxygen," "carbon," etc. Unaware of its real nature, you
set up a colony, using these "elements" to grow plants for food, pro-
vide “air” to breathe, etc. Since one’s molecules are constantly being exchanged with the environment, you and other colonizers come (in a period of a few years) to be composed mainly of the “matter” made of the tiny people in space ships. Would you be any less capable of feeling pain, thinking, etc. just because the matter of which you are composed contains (and depends on for its characteristics) beings who themselves have a functional organization characteristic of sentient creatures? I think not. The basic electrochemical mechanisms by which the synapse operates are now fairly well understood. As far as is known, changes that do not affect these electrochemical mechanisms do not affect the operation of the brain, and do not affect mentality. The electrochemical mechanisms in your synapses would be unaffected by the change in your matter.\(^{16}\)

It is interesting to compare the elementary-particle-people example with the homunculi-headed examples the chapter started with. A natural first guess about the source of our intuition that the initially described homunculi-headed simulations lack mentality is that they have too much internal mental structure. The little men may be sometimes bored, sometimes excited. We may even imagine that they deliberate about the best way to realize the given functional organization and make changes intended to give them more leisure time. But the example of the elementary-particle people just described suggests this first guess is wrong. What seems important is how the mentality of the parts contributes to the functioning of the whole.

There is one very noticeable difference between the elementary-particle-people example and the earlier homunculus examples. In the former, the change in you as you become homunculus-infested is not one that makes any difference to your psychological processing (i.e., information processing) or neurological processing but only to your microphysics. No techniques proper to human psychology or neurophysiology would reveal any difference in you. However, the homunculi-headed simulations described in the beginning of the chapter are not things to which neurophysiological theories true of us apply, and if they are construed as Functional (rather than Psychofunctional) simulations, they need not be things to which psychological (information-processing) theories true of us apply. This difference suggests that our intuitions are in part controlled by the
not unreasonable view that our mental states depend on our having the psychology and/or neurophysiology we have. So something that differs markedly from us in both regards (recall that it is a Functional rather than Psychofunctional simulation) should not be assumed to have mentality just on the ground that it is Functionally equivalent to us.17

1.6 Is the Prima Facie Doubt Merely Prima Facie?

The Absent Qualia Argument rested on an appeal to the intuition that the homunculi-headed simulations lacked mentality, or at least qualia. I said that this intuition gave rise to prima facie doubt that functionalism is true. But intuitions unsupported by principled argument are hardly to be considered bedrock. Indeed, intuitions incompatible with well-supported theory (e.g., the pre-Copernican intuition that the earth does not move) thankfully soon disappear. Even fields like linguistics whose data consist mainly in intuitions often reject such intuitions as that the following sentences are ungrammatical (on theoretical grounds):

- The horse raced past the barn fell.
- The boy the girl the cat bit scratched died.

These sentences are in fact grammatical, though hard to process.18

Appeal to intuitions when judging possession of mentality, however, is especially suspicious. No physical mechanism seems very intuitively plausible as a seat of qualia, least of all a brain. Is a hunk of quivering gray stuff more intuitively appropriate as a seat of qualia than a covey of little men? If so, perhaps there is a prima facie doubt about the qualia of brain-headed systems too.

However, there is a very important difference between brain-headed and homunculi-headed systems. Since we know that we are brain-headed systems, and that we have qualia, we know that brain-headed systems can have qualia. So even though we have no theory of qualia which explains how this is possible, we have overwhelming reason to disregard whatever prima facie doubt there is about the qualia of brain-headed systems. Of course, this makes the Absent Qualia Argument partly empirical—it depends on knowledge of what makes us tick. But since this is knowledge we in fact possess, dependence on this knowledge should not be regarded as a defect.
There is another difference between us meat-heads and the homunculi-heads: they are systems designed to mimic us, but we are not designed to mimic anything (here I rely on another empirical fact). This fact forestalls any attempt to argue on the basis of an inference to the best explanation for the qualia of homunculi-heads. The best explanation of the homunculi-heads’ screams and winces is not their pains, but that they were designed to mimic our screams and winces.

Some people seem to feel that the complex and subtle behavior of the homunculi-heads (behavior just as complex and subtle—even as “sensitive” to features of the environment, human and nonhuman, as your behavior) is itself sufficient reason to disregard the prima facie doubt that homunculi-heads have qualia. But this is just crude behaviorism.

I shall try to convince the reader of this by describing a machine that would act like a mental system in a situation in which only verbal inputs and outputs are involved (a machine that would pass the “Turing Test”).

Call a string of sentences whose members, spoken one after another, can be uttered in an hour or less, a speakable string of sentences. A speakable string can contain one very long sentence, or two shorter ones. Consider the set of all speakable strings of sentences. Since English has a finite number of words (indeed, a finite number of sound sequences forming possible words short enough to appear in a speakable string), this set has a very large but finite number of members. Consider the subset of the set of all speakable strings of sentences, each of whose member strings can be understood as a conversation in which at least one party is “making sense.” Call it the set of smart speakable strings. For example, if we allot each party to a conversation one sentence per “turn,” each even-numbered sentence of each string in S would be a sensible contribution to the ongoing discussion. We need not be too restrictive about what is to count as making sense. For example, if sentence 1 is “Let’s see you talk nonsense,” then sentence 2 could be nonsensical. The set of smart speakable strings is a finite set which could in principle be listed by a very large team working for a long time with a very large grant. Imagine that the smart speakable strings are recorded on tape and deployed by a very simple machine, as fol-
TROUBLES WITH FUNCTIONALISM

An interrogator utters sentence A. The machine searches the set of smart speakable strings, picks out those strings that begin with A, and picks one string at random (or it might pick the first string it finds beginning with A, using a random search). It then produces the second sentence in that string, call it ‘B’. The interrogator utters another sentence, call it ‘C’. The machine picks a string at random that starts with A, followed by B, followed by C, and utters its fourth sentence, and so on.

Now, if the team has been thorough and imaginative in listing the smart speakable strings, this machine would simulate human conversational abilities. Indeed, if the team did a brilliantly creative job, the machine’s conversational abilities might be superhuman (though if it is to “keep up” with current events, the job would have to be redone often). But this machine clearly has no mental states at all. It is just a huge list-searcher plus a tape recorder.

Thus far in this section, I have admitted that the intuition that the homunculi-head lacks qualia is far from decisive, since intuition balks at assigning qualia to any physical mechanism. But I went on to argue that although there is good reason to disregard any intuition that brain-headed systems lack qualia, there is no reason to disregard our intuition that homunculi-headed simulations lack qualia. I now want to argue that the intuition that homunculi-headed simulations lack qualia can be backed up by argument. The rest of this section will be devoted to Functionalism and Functional simulations. The next section will be devoted to parallel considerations with respect to Psychofunctionalism.

Think of the original homunculi-headed example as being designed to be Functionally equivalent to you. Since it need not be Psychofunctionally equivalent to you (see the next section), it need not be something to which any scientific psychological theory true of you applies. Obviously, it would not be something to which neurological theories true of you apply. Now as I pointed out in the last few paragraphs of the last section, it is a highly plausible assumption that mental states are in the domain of psychology and/or neurophysiology, or at least that mentality depends crucially on psychological and/or neurophysiological processes and structures. But since the homunculi-headed Functional simulation of you is markedly unlike you neurophysiologically (insofar as it makes sense to speak
of something with no neurons at all being neurophysiologically unlike anything) and since it need not be anything like you psychologically (that is, its information processing need not be remotely like yours), it is reasonable to doubt that it has mentality, even if it is Functionally equivalent to you. Further, the comparison made in the last section with the person infected with homunculi at the elementary-particle level suggests that this argument is at least part of the source of the intuition that the homunculi-headed functional simulation does not have mentality.¹⁹

This is not an overwhelmingly powerful argument, but it does seem sufficient to throw the onus of argument on Functionalists. If there is no minimally decent argument for Functionalism, it seems the argument against Functionalism supported by the homunculi-headed examples should be regarded as showing Functionalism is false.

In spite of the widespread belief in forms of Functionalism, I know of only one kind of argument for it in the literature. It is claimed that Functional identities can be shown to be true on the basis of analyses of the meanings of mental terminology. According to this argument, Functional identities are to be justified in the way one might try to justify the claim that the state of being a bachelor is identical to the state of being an unmarried man. A similar argument appeals to commonsense platitudes about mental states instead of truths of meaning. Lewis says that Functional characterizations of mental states are in the province of “common sense psychology—folk science, rather than professional science” (Lewis, 1972, p. 250. See also Shoemaker, 1975, and Armstrong, 1968. Armstrong equivocates on the analyticity issue. See Armstrong, 1968, pp. 84–85, and p. 90.). And he goes on to insist that Functional characterizations should “include only platitudes which are common knowledge among us—everyone knows them, everyone knows that everyone else knows them, and so on” (Lewis, 1972, p. 256). I shall talk mainly about the “platitude” version of the argument. The analyticity version is vulnerable to essentially the same considerations, as well as Quinean doubts about analyticity.

Because of the required platitudinous nature of Functional definitions, Functionalism runs into serious difficulties with cases such as paralytics and disembodied brains hooked up to life-support sys-
tems. Suppose, for example, that C is a cluster of inputs and mental states which, according to Functionalism, issues in some characteristic behavior, B. We might take C to consist in part in: pain, the desire to be rid of the pain, the belief that an object in front of one is causing the pain, and the belief that the pain can easily be avoided by reverse locomotion. Let B be reverse locomotion. But a paralytic could typically have C without B. It might be objected, "If C typically issues in B, then one of the elements of C would have to be the belief that B is possible, but a paralytic would not have this belief." Reply: Imagine a paralytic who does not know he/she is paralyzed and who has the kind of hippocampal lesion that keeps him/her from learning, or imagine a paralytic whose paralysis is intermittent. Surely someone in intense pain who believes the only way to avoid intense pain is by reverse locomotion and who believes he or she might be capable of reverse locomotion will (other things equal) attempt to locomote in reverse. This is as platitudinous as any of the platitudes in the Functionalist collection. But in the case of an intermittent paralytic, attempts to locomote in reverse might typically fail, and, thus, he/she might typically fail to emit B when in C. Indeed, one can imagine that a disease strikes worldwide, resulting in intermittent paralysis of this sort in all of us, so that none of us typically emits B in C.

It would seem that such a turn of events would require Functionals to suppose that some of the mental states which make up C no longer occur. But this seems very implausible.

This objection is further strengthened by attention to brain-in-bottle examples. Perhaps the day will come when our brains will be periodically removed for cleaning. Imagine that this is done initially by treating neurons attaching the brain to the body with a chemical that allows them to stretch like rubber bands, so that no connections are disrupted. As technology advances, in order to avoid the inconvenience of one's body being immobilized while one's brain is serviced, brains are removed, the connections between brain and body being maintained by radio, while one goes about one's business. After a few days, the customer returns and has the brain reinserted. Sometimes, however, people's bodies are destroyed by accidents while their brains are being cleaned. If hooked up to input sense organs (but not output organs) these brains would exhibit
none of the usual platitudinous connections between behavior and clusters of inputs and mental states. If, as seems plausible, these brains could have almost all the same (narrow) mental states as we have, Functionalism is wrong.

It is instructive to compare the way Psychofunctionalism attempts to handle cases like paralysis and brains in bottles. According to Psychofunctionalism, what is to count as a system’s inputs and outputs is an empirical question. Counting neural impulses as inputs and outputs would avoid the problems just sketched, since the brains in bottles and paralytics could have the right neural impulses even without bodily movements. Objection: there could be paralysis that affects the nervous system, and thus affects the neural impulses, so the problem which arises for Functionalism arises for Psychofunctionalism as well. Reply: nervous system diseases can actually change mentality, e.g., they can render victims incapable of having pain. So it might actually be true that a widespread nervous system disease that caused intermittent paralysis rendered people incapable of certain mental states.

According to plausible versions of Psychofunctionalism, the job of deciding what neural processes should count as inputs and outputs is in part a matter deciding what malfunctions count as changes in mentality and what malfunctions count as changes in peripheral input and output connections. Psychofunctionalism has a resource that Functionalism does not have, since Psychofunctionalism allows us to adjust the line we draw between the inside and the outside of the organism so as to avoid problems of the sort discussed. All versions of Functionalism go wrong in attempting to draw this line on the basis of only commonsense knowledge; “analyticity” versions of Functionalism go especially wrong in attempting to draw the line a priori.

Objection: Sydney Shoemaker suggests (in correspondence) that problems having to do with paralytics, and brains in vats of the sort I mentioned, can be handled using his notion of a “paradigmatically embodied person” (see Shoemaker, 1976). Paradigmatic embodiment involves having functioning sensory apparatus and considerable voluntary control of bodily movements. Shoemaker’s suggestion is that we start with a functional characterization of a paradigmatically embodied person, saying, inter alia, what it is for a physical state
to realize a given mental state in a paradigmatically embodied person. Then, the functional characterization could be extended to nonparadigmatically embodied persons by saying that a physical structure that is not a part of a paradigmatically embodied person will count as realizing mental states, if, without changing its internal structure and the sorts of relationships that hold between its states, it could be incorporated into a larger physical system that would be the body of a paradigmatically embodied person in which the states in question played the functional roles definitive of mental states of a paradigmatically embodied person. Shoemaker suggests that a brain in a vat can be viewed from this perspective, as a limiting case of an amputee—amputation of everything but the brain. For the brain can (in principle) be incorporated into a system so as to form a paradigmatically embodied person without changing the internal structure and state relations of the brain.

Reply: Shoemaker's suggestion is very promising, but it saves functionalism only by retreating from Functionalism to Psychofunctionalism. Obviously, nothing in prescientific commonsense wisdom about mentality tells us what can or cannot be paradigmatically embodied without changing its internal structure and state relations. Imagine an entire human nervous system, including peripheral nerve endings in a vat. Think of a gram of the peripheral tissues removed. Then another gram removed, then another, and so on. At what point (and given what kinds of removal) do we have something which can no longer be paradigmatically embodied “without changing its internal structure and state relations”? This is not merely a conceptual question. Indeed, the scientific issues involved in answering this question may well be very similar to the scientific issues involved in the Psychofunctionalist question about the difference between defects in or damage to input-output devices, as opposed to defects in or damage to central mechanisms. That is, the scientific task of drawing the Psychofunctionalist line between the inside and the outside of an organism seems pretty much the same as Shoemaker's task of drawing the line between what can and what cannot be paradigmatically embodied without changing its internal structure and state relations.

I shall briefly raise two additional problems for Functionalism. The first might be called the Problem of Differentiation: there are
mental states that are different, but that do not differ with respect to platitudes. Consider different tastes or smells that have typical causes and effects, but whose typical causes and effects are not known or are not known to very many people. For example, tannin in wine produces a particular taste immediately recognizable to wine drinkers. As far as I know, there is no standard name or description (except "tannic") associated with this taste. The causal antecedents and consequents of this taste are not widely known, there are no platitudes about its typical causes and effects. On experiencing this taste and being asked, "What is this taste?" even cooperative people do not typically reply "tannic" since they typically do not know the word. Moreover, there are sensations that not only have no standard names but whose causes and effects are not yet well understood by anyone. Let A and B be two such (different) sensations. Neither platitudes nor truths of meaning can distinguish between A and B. Since the Functional description of a mental state is determined by the platitudes true of that state, and since A and B do not differ with respect to platitudes, Functionalists would be committed to identifying A and B with the same Functional state, and thus they would be committed to the claim that A = B, which is ex hypothesi false.

A second difficulty for Functionalism is that platitudes are often wrong. I suppose it is a platitude that the particular olfactory sensation which we associate with skunks is typically caused by skunks. But surely it could turn out that this sensation is more often than not caused by another animal or a fungus. Indeed, maybe this is already known to experts and has not yet penetrated to the general public. So the platitude-based Functional description of this smell will fail to pick it out.

Let us call this problem the Problem of Truth. Lewis suggests, by way of dealing with this problem, that we specify the causal relations among mental states, inputs and outputs, not by means of the conjunction of all the platitudes, but rather by "a cluster of them—a disjunction of conjunctions of most of them (that way it will not matter if a few are wrong.)" This move may exacerbate the problem of Differentiation, however, since there may be pairs of different mental states that are alike with respect to most platitudes.
2.1 Arguments for Psychofunctionalism, and What Is Wrong with Them

I said there is good reason to take seriously our intuition that the homunculi-headed Functional simulations have no mentality. The good reason was that mentality is in the domain of psychology and/or physiology, and the homunculi-headed Functional simulations need not have either psychological (information-processing) or physiological mechanisms anything like ours. But this line will not apply to a homunculi-headed Psychofunctional simulation. Indeed, there is an excellent reason to disregard any intuition that a homunculi-headed Psychofunctional simulation lacks mentality. Since a Psychofunctional simulation of you would be Psychofunctionally equivalent to you, a reasonably adequate psychological theory true of you would be true of it. Indeed, without changing the homunculi-headed example in any essential way, we could require that every reasonably adequate psychological theory true of you be true of it. What better reason could there be to attribute to it whatever mental states are in the domain of psychology? In the face of such a good reason for attributing mental states to it, prima facie doubts about whether it has those aspects of mentality which are in the domain of psychology should be rejected.

I believe this argument shows that a homunculi-headed simulation could have nonqualitative mental states. However, in the next section I shall describe a Psychofunctional simulation in more detail, arguing that there is nonetheless prima facie doubt that it has qualitative mental states (i.e., states, that, like pain, involve qualia). Moreover, the argument on which this doubt rests is also an argument that qualia are not in the domain of psychology at all. So at least with respect to qualitative states, the onus of argument is still on Psychofunctionalists. I shall now argue that none of the arguments that have been offered for Psychofunctionalism are any good.

Here is one argument for Psychofunctionalism that is implicit in the literature. It is the business of branches of science to tell us the nature of things in the branches’ domains. Mental states are in the domain of psychology, and, hence, it is the business of psychology to tell us what mental states are. Psychological theory can be expected to characterize mental states in terms of the causal re-
lations among mental states, and other mental entities, and among mental entities, inputs, and outputs. But these very causal relations are the ones which constitute the Psychofunctional states that Psychofunctionalism identifies with mental states. So Psychofunctionalism is just the result of applying a plausible conception of science to mentality; Psychofunctionalism is just the doctrine that mental states are the “psychological states” it is the business of psychology to characterize.

That something is seriously amiss with this form of argument can be seen by noting that it would be fallacious if applied to other branches of science.

Consider the analogue of Psychofunctionalism for physics. It says that protonhood, for example, is the property of having certain lawlike relations to certain other physical properties. With respect to current physical theory, protonhood would be identified with a property expressible in terms of the Ramsey sentence of current physical theory (in the manner described on p. 269 above). Now there is an obvious problem with this claim about what it is to be a proton. Namely, this physico-functionalist approach would identify being an anti-proton with the very same property. According to current physical theory, protons and anti-protons are “dual” entities: one cannot distinguish the variable which replaced ‘protonhood’ from the variable that replaced ‘anti-protonhood’ (in any nontrivial way) in the Ramsey sentence of current physical theory. Yet protons and anti-protons are different types of particles; it is a law of physics that particles annihilate their anti-particles; thus, protons annihilate anti-protons, even though protons get along fine with other protons.20

Suppose someone were to argue that ‘protonhood = its Ramsey functional correlate with respect to current physical theory’ is our best hypothesis as to the nature of protonhood, on the ground that this identification amounts to an application of the doctrine that it is the business of branches of science to tell us the nature of things in their domains. The person would be arguing fallaciously. So why should we suppose that this form of argument is any less fallacious when applied to psychology?

In the preceding few paragraphs I may have given the impression that the analogue of Psychofunctionalism in physics can be used to
cast doubt on Psychofunctionalism itself. But there are two important disanalogies between Psychofunctionalism and its physics analogue. First, according to Psychofunctionalism, there is a theoretically principled distinction between, on one hand, the inputs and outputs described explicitly in the Ramsey sentence, and, on the other hand, the internal states and other psychological entities whose names are replaced by variables. But there is no analogous distinction with respect to other branches of science. An observational/theoretical distinction would be analogous if it could be made out, but difficulties in drawing such a distinction are notorious.

Second, and more important, Psychofunctionalism simply need not be regarded as a special case of any general doctrine about the nature of the entities scientific theories are about. Psychofunctionalists can reasonably hold that only mental entities—or perhaps only states, events, and their ilk, as opposed to substances like protons—are “constituted” by their causal relations. Of course, if Psychofunctionalists take such a view, they protect Psychofunctionalism from the proton problem at the cost of abandoning the argument that Psychofunctionalism is just the result of applying a plausible conception of science to mentality.

Another argument for Psychofunctionalism (or, less plausibly, for Functionalism) which can be abstracted from the literature is an “inference to the best explanation” argument: “What else could mental states be if not Psychofunctional states?” For example, Putnam (1967) hypothesizes that (Psycho)functionalism is true and then argues persuasively that (Psycho)functionalism is a better hypothesis than behaviorism or materialism.

But this is a very dubious use of “inference to the best explanation.” For what guarantee do we have that there is an answer to the question “What are mental states?” of the sort behaviorists, materialists, and functionalists have wanted? Moreover, inference to the best explanation cannot be applied when none of the available explanations are any good. In sum, in order for inference to the best explanation to be applicable, two conditions have to be satisfied: we must have reason to believe an explanation is possible, and at least one of the available explanations must be minimally adequate. Imagine someone arguing for one of the proposed solutions to Newcomb’s Problem on the ground that despite its fatal
flaw it is the best of the proposed solutions. That would be a joke. But is the argument for functionalism any better? Behaviorism, materialism, and functionalism are not theories of mentality in the way Mendel’s theory is a theory of heredity. Behaviorism, materialism, and functionalism (and dualism as well) are attempts to solve a problem: the mind-body problem. Of course, this is a problem which can hardly be guaranteed to have a solution. Further, each of the proposed solutions to the mind-body problem has serious difficulties, difficulties I for one am inclined to regard as fatal.

Why is functionalism so widely accepted, given the dearth of good arguments for it, implicit or explicit? In my view, what has happened is that functionalist doctrines were offered initially as hypotheses. But with the passage of time, plausible-sounding hypotheses with useful features can come to be treated as established facts, even if no good arguments have ever been offered for them.

2.2 Are Qualia Psychofunctional States?

I began this chapter by describing a homunculi-headed device and claiming there is prima facie doubt about whether it has any mental states at all, especially whether it has qualitative mental states like pains, itches, and sensations of red. The special doubt about qualia can perhaps be explicated by thinking about inverted qualia rather than absent qualia. It makes sense, or seems to make sense, to suppose that objects we both call green look to me the way objects we both call red look to you. It seems that we could be functionally equivalent even though the sensations fire hydrants evoke in you is qualitatively the same as the sensation grass evokes in me. Imagine an inverting lense which when placed in the eye of a subject results in exclamations like ‘‘Red things now look the way green things used to look, and vice versa.’’ Imagine further, a pair of identical twins one of whom has the lenses inserted at birth. The twins grow up normally, and at age 21 are functionally equivalent. This situation offers at least some evidence that each’s spectrum is inverted relative to the other’s. (See Shoemaker, 1975, footnote 17, for a convincing description of inapersonal spectrum inversion.) However, it is very hard to see how to make sense of the analogue of spectrum inversion with respect to nonqualitative states. Imagine a pair of persons one of whom believes that p is true and that q
(#p) is false, while the other believes that q is true and that p is false. Could these persons be functionally equivalent? It is hard to see how they could.\footnote{Indeed, it is hard to see how two persons could have only this difference in beliefs and yet there be no possible circumstance in which this belief difference would reveal itself in different behavior. Qualia seem (though perhaps not to adherents of Davidsonian Anomalous Monism) to be supervenient on functional organization in a way that beliefs are not.}

In part because of this feature of qualia, I called the argument against functionalism the ‘Absent Qualia Argument.’ But there is another reason for firmly distinguishing between qualitative and nonqualitative mental states in talking about functionalist theories: Psychofunctionalism avoids Functionalism’s problems with nonqualitative states, e.g., propositional attitudes like beliefs and desires. But Psychofunctionalism may be no more able to handle qualitative states than is Functionalism. The reason is that qualia may well not be in the domain of psychology.

To see this, let us try to imagine what a homunculi-headed realization of human psychology would be like. Current psychological theorizing seems directed toward the description of information-flow relations among psychological mechanisms. The aim seems to be to decompose such mechanisms into psychologically primitive mechanisms, “black boxes” whose internal structure is in the domain of physiology rather than in the domain of physiology. (See Fodor, 1968b, Dennett, 1975, and Cummins, 1975; interesting objections are raised in Nagel, 1968.) For example, a near-primitive mechanism might be one that matches two items in a representational system and determines if they are tokens of the same type. Or the primitive mechanisms might be like those in a digital computer, e.g., they might be (a) add 1 to a given register, and (b) subtract 1 from a given register, or if the register contains 0, go to the nth (indicated) instruction. (These operations can be combined to accomplish any digital computer operation; see Minsky, 1967, p. 206.) Consider a computer whose machine language code contains only two instructions corresponding to (a) and (b). If you ask how it multiplies or solves differential equations or makes up payrolls, you can be answered by being shown a program couched in terms of the two machine-language instructions. But if you ask how it
adds 1 to a given register, the appropriate answer is given by a wiring diagram, not a program. The machine is hard-wired to add 1. When the instruction corresponding to (a) appears in a certain register, the contents of another register "automatically" change in a certain way. The computational structure of a computer is determined by a set of primitive operations and the ways nonprimitive operations are built up from them. Thus it does not matter to the computational structure of the computer whether the primitive mechanisms are realized by tube circuits, transistor circuits, or relays. Likewise, it does not matter to the psychology of a mental system whether its primitive mechanisms are realized by one or another neurological mechanism. Call a system a "realization of human psychology" if every psychological theory true of us is true of it. Consider a realization of human psychology whose primitive psychological operations are accomplished by little men, in the manner of the homunculi-headed simulations discussed. So, perhaps one little man produces items from a list, one by one, another compares these items with other representations to determine whether they match, etc.

Now there is good reason for supposing this system has some mental states. Propositional attitudes are an example. Perhaps psychological theory will identify remembering that P with having "stored" a sentencelike object which expresses the proposition that P (Fodor, 1975). Then if one of the little men has put a certain sentencelike object in "storage," we may have reason for regarding the system as remembering that P. But unless having qualia is just a matter of having certain information processing (at best a controversial proposal—see later discussion), there is no such theoretical reason for regarding the system as having qualia. In short, there is perhaps as much doubt about the qualia of this homunculi-headed system as there was about the qualia of the homunculi-headed Functional simulation discussed early in the chapter.

But the system we are discussing is ex hypothesi something of which any true psychological theory is true. So any doubt that it has qualia is a doubt that qualia are in the domain of psychology.

It may be objected: "The kind of psychology you have in mind is cognitive psychology, i.e., psychology of thought processes; and it is no wonder that qualia are not in the domain of cognitive psychology!" But I do not have cognitive psychology in mind, and if
it sounds that way, this is easily explained: nothing we know about the psychological processes underlying our conscious mental life has anything to do with qualia. What passes for the “psychology” of sensation or pain, for example, is (a) physiology, (b) psychophysics (i.e., study of the mathematical functions relating stimulus variables and sensation variables, e.g., the intensity of sound as a function of the amplitude of the sound waves), or (c) a grabbag of descriptive studies (see Melzack, 1972, Ch. 2). Of these, only psychophysics could be construed as being about qualia per se. And it is obvious that psychophysics touches only the functional aspect of sensation, not its qualitative character. Psychophysical experiments done on you would have the same results if done on any system Psychofunctionally equivalent to you, even if it had inverted or absent qualia. If experimental results would be unchanged whether or not the experimental subjects have inverted or absent qualia, they can hardly be expected to cast light on the nature of qualia.

Indeed, on the basis of the kind of conceptual apparatus now available in psychology, I do not see how psychology in anything like its present incarnation could explain qualia. We cannot now conceive how psychology could explain qualia, though we can conceive how psychology could explain believing, desiring, hoping, etc. (see Fodor, 1975). That something is currently inconceivable is not a good reason to think it is impossible. Concepts could be developed tomorrow that would make what is now inconceivable conceivable. But all we have to go on is what we know, and on the basis of what we have to go on, it looks like qualia are not in the domain of psychology.

Objection: if the Psychofunctional simulation just described has the same beliefs I have, then among its beliefs will be the belief that it now has a headache (since I now am aware of having a headache). Is its belief mistaken?

Reply: if it has beliefs, yes. The objection evidently assumes some version of the Incorrigibility Thesis (if x believes he has a pain, it follows that he does have a pain). I believe the Incorrigibility Thesis to be false. But even if it is true, it is a double-edged sword. For one can just as well use it to argue that Psychofunctionalism’s difficulties with qualia infect its account of belief too. For if the homunculi-headed simulation is in a state Psychofunctionally equivalent to be-
believing it is in pain, yet has no qualia, and hence no pain, then if the Incorrigibility Thesis is true, it does not believe it is in pain either. But if it is in a state Psychofunctionally equivalent to belief without believing, belief is not a Psychofunctional state.

Objection: at one time it was inconceivable that temperature could be a property of matter, if matter was composed only of particles bouncing about; but it would not have been rational to conclude temperature was not in the domain of physics. Reply: first, what the objection says was inconceivable was probably never inconceivable. When the scientific community could conceive of matter as bouncing particles, it could probably also conceive of heat as something to do with the motion of the particles. Bacon’s theory that heat was motion was introduced at the inception of theorizing about heat—a century before Galileo’s primitive precursor of a thermometer, and even before distinctions among the temperature of x, the perceived temperature of x, and x’s rate of heat conduction were at all clear (Kuhn, 1961). Second, there is quite a difference between saying something is not in the domain of physics and saying something is not in the domain of psychology. Suggesting that temperature phenomena are not in the domain of physics is suggesting that they are not explainable at all.

It is no objection to the suggestion that qualia are not psychological entities that qualia are the very paradigm of something in the domain of psychology. As has often been pointed out, it is in part an empirical question what is in the domain of any particular branch of science. The liquidity of water turns out not to be explainable in chemistry, but rather by subatomic physics. Branches of science have at any given time a set of phenomena they seek to explain. But it can be discovered that some phenomenon which seemed central to a branch of science is actually in the purview of a different branch.

Suppose psychologists discover a correlation between qualitative states and certain cognitive processes. Would that be any reason to think the qualitative states are identical to the cognitive states they are correlated with? Certainly not. First, what reason would there be to think this correlation would hold in the homunculi-headed systems that Psychofunctionally simulate us? Second, although a case can be made that certain sorts of general correlations between Fs and Gs provide reason to think F is G, this is only the case when
the predicates are predicates of different theories, one of which is reducible to the other. For example, there is a correlation between thermal and electrical conductivity (asserted by the Wiedemann-Franz Law), but it would be silly to suggest that this shows thermal conductivity is electrical conductivity (see Block, 1971, Ch. 3).

I know of only one serious attempt to fit “consciousness” into information-flow psychology: the program in Dennett, 1978. But Dennett fits consciousness into information-flow psychology only by claiming that the contents of consciousness are exhausted by judgments. His view is that to the extent that qualia are not judgments (or beliefs), they are spurious theoretical entities that we postulate to explain why we find ourselves wanting to say all sorts of things about what is going on in our minds.

Dennett’s doctrine has the relation to qualia that the U.S. Air Force had to so many Vietnamese villages: he destroys qualia in order to save them. Is it not more reasonable to tentatively hypothesize that qualia are determined by the physiological or physico-chemical nature of our information processing, rather than by the information flow per se?

The Absent Qualia Argument exploits the possibility that the Functional or Psychofunctional state Functionalists or Psychofunctionalists would want to identify with pain can occur without any quale occurring. It also seems to be conceivable that the latter occur without the former. Indeed, there are facts that lend plausibility to this view. After frontal lobotomies, patients typically report that they still have pains, though the pains no longer bother them (Melzack, 1973, p. 95). These patients show all the “sensory” signs of pain (e.g., recognizing pin pricks as sharp), but they often have little or no desire to avoid “painful” stimuli.

One view suggested by these observations is that each pain is actually a composite state whose components are a quale and a Functional or Psychofunctional state. Or what amounts to much the same idea, each pain is a quale playing a certain Functional or Psychofunctional role. If this view is right, it helps to explain how people can have believed such different theories of the nature of pain and other sensations: they have emphasized one component at the expense of the other. Proponents of behaviorism and functionalism have had one component in mind; proponents of private
ostensive definition have had the other in mind. Both approaches err in trying to give one account of something that has two components of quite different natures.

3.1 Chauvinism vs. Liberalism

It is natural to understand the psychological theories Psychofunctionalism adverts to as theories of human psychology. On Psychofunctionalism, so understood, it is logically impossible for a system to have beliefs, desires, etc., except insofar as psychological theories true of us are true of it. Psychofunctionalism (so understood) stipulates that Psychofunctional equivalence to us is necessary for mentality.

The alternative characterization of Psychofunctionalism mentioned on p. 274 explicitly made Psychofunctional equivalence to us necessary for mentality. That characterization was: mental states are states that consist in being causally related to whatever psychological events, states, and processes, and other entities [as well as inputs and outputs] actually obtain in us in whatever way those entities are causally related to one another. But even if Psychofunctional equivalence to us is a condition on our recognition of mentality, what reason is there to think it is a condition on mentality itself? Could there not be a wide variety of possible psychological processes that can underlie mentality, of which we instantiate only one type? Suppose we meet Martians and find that they are roughly Functionally (but not Psychofunctionally) equivalent to us. When we get to know Martians, we find them about as different from us as humans we know. We develop extensive cultural and commercial intercourse with them. We study each other’s science and philosophy journals, go to each other’s movies, read each other’s novels, etc. Then Martian and Earthian psychologists compare notes, only to find that in underlying psychology, Martians and Earthians are very different. They soon agree that the difference can be described as follows. Think of humans and Martians as if they were products of conscious design. In any such design project, there will be various options. Some capacities can be built in (innate), others learned. The brain can be designed to accomplish tasks using as much memory capacity as necessary in order to minimize use of computation capacity; or,
on the other hand, the designer could choose to conserve memory space and rely mainly on computation capacity. Inferences can be accomplished by systems which use a few axioms and many rules of inference, or, on the other hand, few rules and many axioms. Now imagine that what Martian and Earthian psychologists find when they compare notes is that Martians and Earthians differ as if they were the end products of maximally different design choices (compatible with rough Functional equivalence in adults). Should we reject our assumption that Martians can enjoy our films, believe their own apparent scientific results, etc? Should they “reject” their “assumption” that we “enjoy” their novels, “learn” from their textbooks, etc.? Perhaps I have not provided enough information to answer this question. After all, there may be many ways of filling in the description of the Martian-human differences in which it would be reasonable to suppose there simply is no fact of the matter, or even to suppose that the Martians do not deserve mental ascriptions. But surely there are many ways of filling in the description of the Martian-Earthian difference I sketched on which it would be perfectly clear that even if Martians behave differently from us on subtle psychological experiments, they nonetheless think, desire, enjoy, etc. To suppose otherwise would be crude human chauvinism. (Remember theories are chauvinist insofar as they falsely deny that systems have mental properties and liberal insofar as they falsely attribute mental properties.)

So it seems as if in preferring Psychofunctionalism to Functionalism, we erred in the direction of human chauvinism. For if mental states are Psychofunctional states, and if Martians do not have these Psychofunctional states, then they do not have mental states either. In arguing that the original homunculi-headed simulations (taken as Functional simulations) had no mentality, I appealed, in effect, to the following principle: if the sole reason to think system x has mentality is that x was built to be Functionally equivalent to us, then differences between x and us in underlying information processing and/or neurophysiology are prima facie reasons to doubt whether x has mental states. But this principle does not dictate that a system can have mentality only insofar as it is Psychofunctionally equivalent to us. Psychofunctional equivalence to us is a sufficient
condition for at least some aspects of mentality (those in the domain of psychology), but it is not obvious that it is a necessary condition of any aspects of mentality.

An obvious suggestion of a way out of this difficulty is to identify mental states with Psychofunctional states, taking the domain of psychology to include all creatures with mentality, including Martians. The suggestion is that we define "Psychofunctionalism" in terms of "universal" or "cross-system" psychology, rather than the human psychology I assumed earlier. Universal psychology, however, is a suspect discipline. For how are we to decide what systems should be included in the domain of universal psychology? What systems are the generalizations of universal psychology based on? One possible way of deciding what systems have mentality, and are thus in the domain of universal psychology, would be to use some other developed theory of mentality, e.g., behaviorism or Functionalism. But such a procedure would be at least as ill-justified as the other theory used. Further, if Psychofunctionalism must presuppose some other theory of mind, we might just as well accept the other theory of mind instead.

Perhaps universal psychology will avoid this "domain" problem in the same way other branches of science avoid it or seek to avoid it. Other branches of science start with tentative domains based on intuitive and prescientific versions of the concepts the sciences are supposed to explicate. They then attempt to develop natural kinds in a way which allows the formulations of lawlike generalizations which apply to all or most of the entities in the prescientific domains. In the case of many branches of science—including biological and social sciences such as genetics and linguistics—the prescientific domain turned out to be suitable for the articulation of lawlike generalizations.

Now it may be that we shall be able to develop universal psychology in much the same way we develop Earthian psychology. We decide on an intuitive and prescientific basis what creatures to include in its domain, and work to develop natural kinds of psychological theory which apply to all or at least most of them. Perhaps the study of a wide range of organisms found on different worlds will one day lead to theories that determine truth conditions for the attribution of mental states like belief, desire, etc., applicable
to systems which are pretheoretically quite different from us. Indeed, such cross-world psychology will no doubt require a whole new range of mentalistic concepts. Perhaps there will be families of concepts corresponding to belief, desire, etc., that is, a family of belieflike concepts, desirelike concepts, etc. If so, the cross-world psychology we develop shall, no doubt, be somewhat dependent on which new organisms we discover first. Even if cross-world psychology is in fact possible, however, there will certainly be many possible organisms whose mental status is indeterminate.

On the other hand, it may be that universal psychology is not possible. Perhaps life in the universe is such that we shall simply have no basis for reasonable decisions about what systems are in the domain of psychology and what systems are not.23

If cross-world psychology is possible, the problem I have been raising vanishes. Cross-world Psychofunctionalism avoids the liberalism of Functionalism and the chauvinism of human-Psychofunctionalism. But the question of whether cross-world psychology is possible is surely one which we have no way of answering now. What if cross-world psychology is not possible? Are we forced to choose between the liberalism of Functionalism and the chauvinism of Psychofunctionalism? There is reason to think that cross-world psychology ought to be partially possible and that the extent to which it is possible may resolve the problem of the Martians mentioned above. What makes us want to attribute mentality to the Martians is that they are (a) Functionally equivalent to us, and (b) they have a psychology as rich as ours, e.g., they do not operate by means of mechanisms like the tree-searcher described above (p. 294). Now if this fact that the Martian psychology is as rich as ours can be made precise, it should allow us to state a psychological generalization true of both us and the Martians. But then this psychological generalization, added to the generalizations that ground the Functional description that applies to both the Martians and us, should allow us to formulate a "reasonably adequate" psychological theory suitable for framing a Psychofunctional equivalence relation stronger than Functional equivalence, but weaker than the Psychofunctional equivalence relation based on human psychology. This Psychofunctional equivalence relation will license the application of mental terminology to Martians.24

If no more cross-world psychology than this is possible, the attri-
bution of mental states to newly discovered organisms will be largely the product of the kind of linguistic legislation required for practical purposes when a familiar concept must be extended to cover cases of a sort such that there is no matter of fact about whether it applies or not, e.g., in the way terms like 'stomach ulcer' or 'sprained ankle' might be applied in intergalactic medicine.

To summarize my conclusions so far: First, given the reasonable assumption that mental states are in the domain of psychology and/or physiology, the homunculi-head example shows that Functionalism is false. Second, none of the arguments in the literature for either Functionalism or Psychofunctionalism are persuasive. Third: the claim that beliefs and desires are Psychofunctional states is impervious to arguments based on homunculi-heads; but since there is a doubt that qualia are in the domain of psychology, there is a doubt that qualitative states are Psychofunctional states. Finally, I considered chauvinism/liberalism problems for Psychofunctionalism and concluded that some version of Psychofunctionalism may yet steer between the Scylla of liberalism and the Charybdis of chauvinism. So, even if there is no good reason for thinking Psychofunctionalism true, still I have provided only weak reason for thinking it false. In the next section, I bring up a difficulty for Psychofunctionalism (and Functionalism) which may not be easily evaded.

3.2 The Problem of the Inputs and the Outputs

I have been supposing all along (as Psychofunctionalists often do—see Putnam, 1967) that inputs and outputs can be specified by neural impulse descriptions. But this is a chauvinist claim, since it precludes organisms without neurons (e.g., machines) from having functional descriptions. How can one avoid chauvinism with respect to specification of inputs and outputs? One way would be to characterize the inputs and outputs only as inputs and outputs. So the functional description of a person might list outputs by number: output₁, output₂, . . . Then a system could be functionally equivalent to you if it had a set of states, inputs, and outputs causally related to one another in the way yours are, no matter what the states, inputs, and outputs were like. Indeed, though this approach violates the demand of some functionalists that inputs and outputs be physically specified, other functionalists—those who insist only
that input and output descriptions be *nonmental*—may have had something like this in mind. This version of functionalism does not “tack down” functional descriptions at the periphery with relatively specific descriptions of inputs and outputs; rather, this version of functionalism treats inputs and outputs just as all versions of functionalism treat internal states. That is, this version specifies states, inputs, and outputs only by requiring that they *be* states, inputs, and outputs.

The trouble with this version of functionalism is that it is wildly liberal. Economic systems have inputs and outputs, e.g., influx and outflux of credits and debits. And economic systems also have a rich variety of internal states, e.g., having a rate of increase of GNP equal to double the Prime Rate. It does not seem impossible that a wealthy sheik could gain control of the economy of a small country, e.g., Bolivia, and manipulate its financial system to make it functionally equivalent to a person, e.g., himself. If this seems implausible, remember that the economic states, inputs, and outputs designated by the sheik to correspond to his mental states, inputs, and outputs need not be “natural” economic magnitudes. Our hypothetical sheik could pick *any* economic magnitudes at all—e.g., the fifth time derivative of the balance of payments. His only constraint is that the magnitudes he picks be economic, that their having such and such values be inputs, outputs, and states, and that he be able to set up a financial structure which realizes the intended causal structure. The mapping from psychological magnitudes to economic magnitudes could be as bizarre as the sheik requires.

This version of functionalism is far too liberal and must therefore be rejected. If there are any fixed points when discussing the mind-body problem, one of them is that the economy of Bolivia could not have mental states, no matter how it is distorted by powerful hobbyists. Obviously, we must be more specific in our descriptions of inputs and outputs. The question is: is there a description of inputs and outputs specific enough to avoid liberalism, yet general enough to avoid chauvinism? I doubt that there is.

Every proposal for a description of inputs and outputs I have seen or thought of is guilty of either liberalism or chauvinism. Though this paper has focused on liberalism, chauvinism is the more pervasive problem. Consider standard Functional and Psychofunctional
descriptions. Functionalists tend to specify inputs and outputs in
the manner of behaviorists: outputs in terms of movements of arms
and legs, sound emitted and the like; inputs in terms of light and
sound falling on the eyes and ears. As I argued earlier, this concep-
tion is chauvinist, since it denies mentality to brains in vats and to
paralytics. But the chauvinism inherent in Functional descriptions
runs deeper. Such descriptions are blatantly *species-specific*. Hu-
mans have arms and legs, but snakes do not—and whether or not
snakes have mentality, one can easily imagine snakelike creatures
that do. Indeed, one can imagine creatures with all manner of input-
output devices, e.g., creatures that communicate and manipulate
by emitting strong magnetic fields. Of course, one could formulate
Functional descriptions for each such species, and somewhere in dis-
junctive heaven there is a disjunctive description which will handle
all species that ever actually exist in the universe (the description
may be infinitely long). But even an appeal to such suspicious en-
tities as infinite disjunctions will not bail out Functionalism, since
even the amended view will not tell us what there is in common to
pain-feeling organisms in virtue of which they all have pain. And it
will not allow the ascription of pain to some hypothetical (but non-
extistent) pain-feeling creatures. Further, these are just the grounds
on which functionalists typically acerbically reject the disjunctive
theories sometimes advanced by desperate physicalists. If func-
tionalists suddenly smile on wildly disjunctive states to save themselves
from chauvinism, they will have no way of defending themselves
from physicalism.

Standard Psychofunctional descriptions of inputs and outputs
are also species-specific (e.g., in terms of neural activity) and hence
chauvinist as well.

The chauvinism of standard input-output descriptions is not hard
to explain. The variety of possible intelligent life is enormous. Given
any fairly specific descriptions of inputs and outputs, any high-
school-age science-fiction buff will be able to describe a sapient
sentient being whose inputs and outputs fail to satisfy that descrip-
tion.

I shall argue that *any physical description* of inputs and outputs
(recall that many functionalists have insisted on physical descrip-
tions) yields a version of functionalism that is hopelessly chauvinist.
Imagine yourself so badly burned in a fire that your optimal way of communicating with the outside world is via modulations of your EEG pattern in Morse Code. You find that thinking an exciting thought produces a pattern that your audience agrees to interpret as a dot, and a dull thought produces a “dash.” Indeed, this fantasy is not so far from reality. According to a recent newspaper article (Boston Globe, March 21, 1976), “at UCLA scientists are working on the use of EEG to control machines. . . . A subject puts electrodes on his scalp, and thinks an object through a maze.” The “reverse” process is also presumably possible: others communicating with you in Morse Code by producing bursts of electrical activity that affect your brain (e.g., causing a long or short afterimage). Alternatively, if the cerebroscopes that philosophers often fancy become a reality, your thoughts will be readable directly from your brain. Again, the reverse process also seems possible. In these cases, the brain itself becomes one’s input and output device. But this possibility has embarrassing consequences for functionalism. You will recall, that as functionalists have emphasized in criticizing physicalism, a single mental state can be realized by an indefinite variety of physical states, that have no necessary and sufficient physical characterization. But if this functionalist point against physicalism is right, since the device which physically realizes mental states can serve as a mental system’s input and output devices, the same point applies to mental systems’ input and output devices. That is, on any sense of ‘physical’ in which the functionalist criticism of physicalism is correct, there will be no physical characterizations that apply to all mental systems’ inputs and outputs. Hence, any attempt to formulate a functional description with physical characterizations of inputs and outputs will exclude some systems with mentality, and thus will be chauvinist.

If the functionalist argument against physicalism is right, any functional description that specifies inputs and outputs physically will be chauvinist. Moreover, mental or “action” terminology (e.g., ‘punching the offending person’) may not be used either, since to use such specifications of inputs or outputs would be to give up the functionalist program of characterizing mentality in nonmental terms. On the other hand, you recall, characterizing inputs and outputs simply as inputs and outputs is inevitably liberal. I, for one,
do not see how functionalism can describe inputs and outputs without falling afoul of either liberalism or chauvinism, or abandoning the original project of characterizing mentality in nonmental terms. I do not claim that this is a conclusive argument against functionalism. Rather, like the functionalist argument against physicalism, it is perhaps best construed as a burden of proof argument. The functionalist says to the physicalist: "It is hard to see how there could be a single physical characterization of the internal state of every possible organism functionally equivalent to a human." I say to the functionalist: "It is very hard to see how there could be a single characterization of inputs and outputs that applies to all and only mental systems." In both cases, it seems enough has been said to make it the responsibility of those who think there could be such characterizations to sketch how they could be possible.

Notes

1. The converse is also true.

2. It would be misleading to define 'behaviorism' in this way because although functionalists, like behaviorists, typically want to be able to eliminate mental terms, unlike behaviorists, they accomplish this by means which typically presuppose the existence of mental states. For example, Lewis's functional definitions of mental state terms contain no mental state terms, but they quantify over mental states.

3. Lewis's functional definitions are constructed as follows: We formulate an account consisting mainly of all the common-sense platitudes about causal relations among mental states, inputs, and outputs. Then we reformulate the account so that all the mental-state terms are singular terms (e.g., 'is angry' becomes 'has anger'). We write the account as a single sentence, $\forall T(t_1 \ldots t_n)$, where $t_1 \ldots t_n$ are mental state terms. We replace $t_1 \ldots t_n$ by variables $x_1 \ldots x_n$, and form the modified Ramsey sentence (what Lewis sometimes calls the unique realization sentence), $\exists f(x_1 \ldots x_n)T(x_1 \ldots x_n)\exists$. This says there is exactly one n-tuple of entities that realizes the original common-sense account. We can define the n-tuple of mental state terms by means of the modified Ramsey sentence: $\exists f(x_1 \ldots x_n)T(x_1 \ldots x_n)\exists$. Any single mental-state term can be defined in an obvious way. For example,

$$t_1 = \forall y_1 \exists y_2 \ldots y_n \forall x_1 \ldots x_n (T[x_1 \ldots x_n] \equiv y_1 = x_1 \& \ldots \& y_n = x_n)$$

Lewis (1971 and 1972) does not, strictly speaking, espouse a version of the doctrine I am calling 'functionalism'. He claims not that pain is a functional state, but that pain can be functionally characterized, i.e., picked out by a certain sort of definite description (as indicated in the preceding paragraph). However, I occasionally consider Lewis a functional-state identity theorist, because his view is easily transformed into a clear and useful version of a functional-state identity thesis (see p. 269). Further, given that Lewis claims his functional characterizations are analytic, he seems committed to a functional-property identity thesis. In my view, this amounts to much the same thing as a functional-state identity thesis.
4. State type, not state token. Throughout the chapter, I shall mean by 'physicalism' the doctrine that says each distinct type of mental state is identical to a distinct type of physical state; for example, pain (the universal) is a physical state. Token physicalism, on the other hand, is the (weaker) doctrine that each particular datable pain is a state of some physical type or other. Functionalism shows that type physicalism is false, but it does not show that token physicalism is false.

By 'physicalism', I mean first order physicalism, the doctrine that, e.g., the property of being in pain is a first-order (in the Russell-Whitehead sense) physical property. (A first-order property is one whose definition does not require quantification over properties; a second-order property is one whose definition requires quantification over first-order properties.) The claim that being in pain is a second-order physical property is actually a (physicalist) form of functionalism. See Putnam, 1970.

'Physical property' could be defined for the purposes of this chapter as a property expressed by a predicate of some true physical theory or, more broadly, by a predicate of some true theory of physiology, biology, chemistry, or physics. Of course, such a definition is unsatisfactory without characterizations of these branches of science. See Hempel, 1970 for further discussion of this problem.

5. Kim, 1972, p. 190; Lewis, 1969. Lewis makes it clear that he thinks both functionalist and materialist identities can be true. It is worth noting that if P is the functional state nonphysicalist functionalists want to identify with pain, those who assert both functionalist and materialist identities would have to claim human P is one brain state and Martian P is another. In fairness to Lewis, the version of functionalism espoused in Lewis 1971 and 1972 is exempt from the kind of criticism I make here. In these articles, he claims only that the meaning of 'pain' can be captured by a certain definite description of the form: 'the occupant of causal role R'. Clearly, the occupant of causal role R can be one thing in the case of humans and another thing in the case of Martians. In the new footnotes to "An Argument for the Identity Theory" (1971), Lewis says that in his view, 'pain' is a contingent name, a name with different denotations in different possible worlds, but 'the attribute of having pain' is a noncontingent name, denoting the same thing in each possible world. Those who share Lewis's doctrine that 'pain' is a contingent name need not thereby reject the arguments of this chapter. I would be satisfied to put all the points I make in terms of functionalism as a property or attribute identity theory viz., the claim that each mental attribute is identical to a functional attribute.

6. Functionalists who are also physicalists have formulated broadly physicalistic versions of functionalism. As functionalists often point out (Putnam, 1967), it is logically possible for a given abstract functional description to be satisfied by a nonphysical object, e.g., a soul. One can formulate a physicalistic version of functionalism simply by explicitly ruling out this possibility. One such physicalistic version of functionalism is suggested by Putnam (1970), Field (1975 and forthcoming) and Lewis (in conversation): having pain is identified with a second-order physical property, a property that consists of having certain first-order physical properties if certain other first-order physical properties obtain (see note 3 for an explication of 'order'). This doctrine combines functionalism (which can be formulated as the doctrine that having pain is the property of having certain properties if certain other properties obtain) with token physicalism (see note 3). Of course, the Putnam-Lewis-Field doctrine is not a version of type physicalism; indeed, the P-L-F doctrine is incompatible with type physicalism.

7. My approach differs in a number of ways from Lewis's method. The main difference is that Lewis claims that 'pain' can be analytically defined as the state with such and such a causal role. According to the version of functionalism that I shall present, a state
S is defined as the state with such and such a causal role, and the functionalist claim becomes: pain = S. In Lewis's version, pain is a functionally characterized state, not a functional state; pain can be a functionally characterized brain state. That is, the definite description that defines 'pain' can pick out a neurophysiological state. In my version, S is itself a functional state. Since Lewis is committed to the analyticity of the claim that pain = the state with such and such a causal role, he is also committed to the claim that being in pain = being in the state with such and such a causal role. But since the property of being in the state with such and such a causal role is a functional property—not merely a functionally characterized property (see Lewis, 1971, pp. 164-165)—Lewis is committed to a functional-property thesis of the sort I am discussing.

8. Correctly stated: where \(\psi \) is a predicate \(\phi a \), let \(\lambda x \forall y \psi \) be a singular term for the property expressed by \(\phi a \). I am grateful to George Boolos for this formulation and for the advice not to use it.

9. The example may be somewhat misleading in that it leaves out causal relations among mental states. It is easy to construct an example which lacks this flaw using the Coke machine described earlier. Let us think of the Coke machine as having two desire-like states, nickel-shmesire and dime-shmesire. The following four sentences describe the causal relations among the Coke machine's mental states, inputs, and outputs:

1. M's having dime-shmesire + 5\(x \) input causes M's having nickel-shmesire + (no Coke, 0\(y \) output.
2. M's having dime-shmesire + 10\(x \) input causes M's having dime-shmesire + (Coke, 0\(y \) output.
3. M's having nickel-shmesire + 5\(x \) input causes M's having dime-shmesire + (Coke, 0\(y \) output.
4. M's having nickel-shmesire + 10\(x \) input causes M's having dime-shmesire + (Coke, 5\(y \) output.

'5\(x \) input' means that a nickel is put into the machine; '(Coke, 5\(y \) output' means a Coke and a nickel are emitted by the machine; '+' should be read as 'together with' T = 1\&2\&3\&4. The Ramsey sentence of T is formed by replacing 'M', 'nickel-shmesire' and 'dime-shmesire' with variables and by existentially quantifying. The property of having dime-shmesire is identified with its Ramsey functional correlate, viz.,

\[
\lambda z\exists x \exists y \left((z's \ having \ x + 5\(x \) \ input \ causes \ z's \ having \ y + (no\ Coke, 0\(y \) output) \& (z's \ having \ x + 10\(x \) \ input \ causes \ z's \ having \ x + (Coke, 0\(y \) output) \& (z's \ having \ y + 5\(x \) \ input \ causes \ z's \ having \ x + (Coke, 0\(y \) output) \& (z's \ having \ y + 10\(x \) \ input \ causes \ z's \ having \ x + (Coke, 5\(y \) output) \& z \ is \ in \ x) \right)
\]

10. The comparison between a functional state identity theory of the sort I have just described and a functional characterization view of the sort that Lewis advances can be clarified if we think of a state type as a certain sort of property, viz., the property each token of that state type has in virtue of being a token of that type. For example, the state pain would be identified with the property of being a pain, i.e., the property each pain has in virtue of which it is a pain. (Notice the difference between being a pain and being in pain; the latter is a property of organisms, the former is a property of pains.) On this assumption, if a psychological theory can be written as

\[
T(s_1 \ldots s_n)
\]

(I omit input and output terms, for brevity), where \(s_1 \ldots s_n \) designate mental states, then, oversimplifying somewhat (see Lewis, 1972, footnote 7), Lewis would functionally define 'pain' as follows:
TROUBLES WITH FUNCTIONALISM

\[\text{pain} = \exists x_1 \exists x_2 \ldots \exists x_n \ T(x_1 \ldots x_n) \]

where \(x_1 \) is the variable that replaces 'pain'. That is, pain would be defined as the state that has a certain causal role. The functional state identity theory approach, on the other hand, would replace Lewis's iota with lambda:

\[\text{pain} = \lambda x_1 \exists x_2 \ldots \exists x_n \ T(x_1 \ldots x_n) \]

That is, pain would be identified with the property of having a certain causal role.

11. This distinction (one machine table in common/all machine tables in common) is arguably a distinction without a difference, given certain plausible conditions on what is to count as a realization of a machine table. That is, it is arguable that any pair of machines that share one machine table share all machine tables (with respect to a given set of inputs and outputs).

12. If, as suggested in note 11, there is no difference, then any machine table that describes the two machines (with respect to a given set of inputs and outputs) will be reasonably adequate.

13. This point has been raised with me by persons too numerous to mention.

14. One potential difficulty for Functionalism is provided by the possibility that one person may have two radically different Functional descriptions of the sort that justify attribution of mentality. In such a case, Functionalists might have to ascribe two radically different systems of belief, desire, etc., to the same person, or suppose that there is no fact of the matter about what the person's propositional attitudes are. Undoubtedly, Functionalists differ greatly on what they make of this possibility, and the differences reflect positions on such issues as indeterminacy of translation.

15. Shoemaker, 1975, argues (in reply to Block & Fodor, 1972) that absent qualia are logically impossible, that is, that it is logically impossible that two systems be in the same functional state yet one's state have and the other's state lack qualitative content. If Shoemaker is right, it is wrong to doubt whether the homunculi-headed system has qualia. I attempt to show Shoemaker's argument to be fallacious in Block, forthcoming.

16. Since there is a difference between the role of the little people in producing your functional organization in the situation just described and the role of the homunculi in the homunculi-headed simulations this chapter began with, presumably Putnam's condition could be reformulated to rule out the latter without ruling out the former. But this would be a most ad hoc maneuver. Further, there are other counterexamples which suggest that a successful reformulation is likely to remain elusive.

Careful observation of persons who have had the nerve bundle connecting the two halves of the brain (the corpus callosum) severed to prevent the spread of epilepsy, suggest that each half of the brain has the functional organization of a sentient being. The same is suggested by the observation that persons who have had one hemisphere removed or anesthetized remain sentient beings. It was once thought that the right hemisphere had no linguistic capacity, but it is now known that the adult right hemisphere has the vocabulary of a 14-year-old and the syntax of a 5-year-old (Psychology Today, 12/75, p. 121). Now the functional organization of each hemisphere is different from the other and from that of a whole human. For one thing, in addition to inputs from the sense organs and outputs to motor neurons, each hemisphere has many input and output connections to the other hemisphere. Nonetheless, each hemisphere may have the functional organization of a sentient being. Perhaps Martians have many more input and output organs than we do. Then each half brain could be functionally like a whole Martian brain. If each of our hemispheres has the functional organization of a sentient being, then a Putnamian
proposal would rule us out (except for those of us who have had hemispherectomies) as pain-feeling organisms.

Further, it could turn out that other parts of the body have a functional organization similar to that of some sentient being. For example, perhaps individual neurons have the same functional organization as some species of insect.

(The argument of the last two paragraphs depends on a version of functionalism that construes inputs and outputs as neural impulses. Otherwise, individual neurons could not have the same functional organization as insects. It would be harder to think of such examples if, for instance, inputs were taken to be irradiation of sense organs or the presence of perceivable objects in the "range" of the sense organs.)

17. A further indication that our intuitions are in part governed by the neurophysiological and psychological differences between us and the original homunculi-headed simulation (construed as a Functional simulation) is that intuition seems to founder on an intermediate case: a device that simulates you by having a billion little men each of whom simulates one of your neurons. It would be like you in psychological mechanisms, but not in neurological mechanisms, except at a very abstract level of description.

There are a number of differences between the original homunculi-heads and the elementary-particle-people example. The little elementary-particle people were not described as knowing your functional organization or trying to simulate it, but in the original example, the little men have as their aim simulating your functional organization. Perhaps when we know a certain functional organization is intentionally produced, we are thereby inclined to regard the thing's being functionally equivalent to a human as a misleading fact. One could test this by changing the elementary-particle-people example so that the little people have the aim of simulating your functional organization by simulating elementary particles; this change seems to me to make little intuitive difference.

There are obvious differences between the two types of examples. It is you in the elementary case and the change is gradual; these elements seem obviously misleading. But they can be eliminated without changing the force of the example much. Imagine, for example, that your spouse's parents went on the expedition and that your spouse has been made of the elementary-particle-people since birth.

18. Compare the first sentence with 'The fish eaten in Boston stank.' The reason it is hard to process is that 'raced' is naturally read as active rather than passive. See Fodor, Bever, & Garrett, 1974, p. 360. For a discussion of why the second sentence is grammatical, see Fodor & Garrett, 1967; Bever, 1970; and Fodor, Bever, & Garrett, 1974.

19. This argument backs up the suggestion of the end of the previous section that the "extra" mentality of the little men per se is not the major source of discomfort with the supposition that the homunculi-headed simulation has mentality. The argument of the last paragraph does not advert at all to the mentality of the homunculi. The argument depends only on the claim that the homunculi-headed Functional simulation need not be either psychologically or neurophysiologically like a human. This point is further strengthened by noticing that it is provable that each homunculus is replaceable by an extremely simple object—a McCullough-Pitts "and" neuron, a device with two inputs and one output that fires just in case the two inputs receive a signal. (The theorem assumes the automaton is a finite automaton and the inputs enter one signal at a time—see Minsky, 1967, p. 45.) So the argument would apply even if the homunculi were replaced by mindless "and" neurons.

20. One could avoid this difficulty by allowing names in one's physical theory. For example, one could identify protons as the particles with such and such properties contained in the nuclei of all atoms of the Empire State Building. No such move will save this argument for Psychofunctionalism, however. First, it is contrary to the idea of func-
tionalism, since functionalism purports to identify mental states with abstract causal structures; one of the advantages of functionalism is that it avoids appeal to ostension in definition of mental states. Second, tying Psychofunctionalism to particular named entities will inevitably result in chauvinism. See Section 3.1.

21. Sylvain Bromberger has pointed out that the spectrum inversion cases carry with them "belief inversion" for qualitative beliefs. That is, someone whose spectrum is inverted will have abnormal beliefs about the qualia usually associated with 'red' and 'green'. My point is not really undermined by this sort of example, since it is the qualitative aspect of the beliefs in question which makes the example work. My point can be restricted to beliefs that have no such qualitative aspect.

22. The quale might be identified with a physico-chemical state. This view would comport with a suggestion Hilary Putnam made in the late '60s in his philosophy of mind seminar. See also Ch. 5 of Gunderson, 1971.

23. To take a very artificial example, suppose we have no way of knowing whether inhabitants of civilizations we discover are the builders of the civilizations or simulations the builders made before departing en masse.

24. I am indebted to Hartry Field for clarification on this point.

25. I am indebted to Sylvain Bromberger, Hartry Field, Jerry Fodor, David Hills, Paul Horwich, Bill Lycan, Georges Rey, and David Rosenthal for their detailed comments on one or another earlier draft of this paper. Parts of the earlier versions were read at Tufts University, Princeton University, University of North Carolina at Greensboro, and SUNY at Binghamton.

References

Block, N. Are absent qualia impossible? forthcoming.
Block, N. & Fodor, J. What psychological states are not. Philosophical Review, 1972, 81, 159-81.
Davidson, D. Mental events. In L. Swanson & J. W. Foster (Eds.), Experience and theory. Amherst, University of Massachusetts Press, 1970.
Dennett, D. A cognitive theory of consciousness. This volume, Ch. 10.
Dennett, D. Why a computer can't feel pain. In Synthese, forthcoming. This article as well as the two preceding articles are to be reprinted in a collection of Dennett's papers: Metapsychology: Essays in the philosophy of mind and psychology, Montgomery, Vt.: Bradford, 1978.
Kuhn, T. The Function of measurement in modern physical science. *Isis*, 1961, 52(8), 161-93.

Putnam, H. The nature of mental states. (This was originally published under the title *Psychological Predicates.*) 1967.

Putnam, H. Philosophy and our mental life. 1975a.

Putnam, H. The meaning of 'meaning'. 1975b.

