Set Theory (F01): Assignment on well-orders

Starred exercises count towards ‘base-line credit’ only.

*1. Which of the following is true and which false? Give reasons.
(i) if \(A = (A, \leq) \) is a well-order, then so is \(A^* = (A, \geq) \);
(ii) if \(A = (A, \leq) \) is a well-order and \(B \) is a subset of \(A \), then \(A \uparrow B \) is a well-order;
(iii) if \(A = (A, \leq) \) is an order and \(A \uparrow B \) is a well-order for some subset \(B \) of \(A \), then \(A \) is a well-order;
(iv) if \(A = (A, \leq) \) and \(A^* = (A, \geq) \) are both well-orders, then \(A \) is finite.

2*. (i) Given a well-order \(A = (A, \leq) \), when is an element \(a \) of \(A \) a limit point of \(A \)?
(ii) Given an example of a well-order that contains no limit points. One limit point. Two limit points. \(n \) limit points for any natural number \(n \). \(\mathbb{N}_0 \) limit points.
(iii) EXCISED
(iv) Show that if \(A = (A, \leq) \) has a limit point then \(A^* = (A, \geq) \) is not a well-order. (It therefore follows, given a well-order \(A = (A, \leq) \), that \(A^* = (A, \leq) \) is also a well-order iff \(A \) contains no limit points.)

3. Let \(A = (A, \leq) \) be any order. Show that \(A \) is a well-order if \(A_a \) is a well-order for any element \(a \) of \(A \).

4. (i) Show, using the comparison theorem, that \((\mathbb{N}, \leq) \) (\(\mathbb{N} \) the set of natural numbers) is similar to an initial segment of any infinite well-order.
(ii) Show, again using the comparison theorem, that any other infinite well-order with this property (being similar to an initial segment of any infinite well-order) is similar to \((\mathbb{N}, \leq) \).

5. Show by transfinite induction on \(a \) that any well-order \(A_a \), for \(a \) in \(A \), is of the form \(B + C \) where \(B \) is a well-order without a last element and \(C \) is a finite well-order. (Since every well-order is of the form \(A_a \), it follows that every well-order can be put in the form \(B + C \).)