Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling

Swati Kushal1, Brooke Bullock Lao1, Laura K. Henchey1, Ramin Dubey1, Hanah Mesallati1, Nathaniel J. Traaseth1, Bogdan Z. Olenyuk2, and Paramjit S. Arora1,2

1Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089; and 2Department of Chemistry, New York University, New York, NY 10003

Edited* by Peter B. Dervan, California Institute of Technology, Pasadena, CA, and approved August 16, 2013 (received for review July 2, 2013)

Selective blockade of gene expression by designed small molecules is a fundamental challenge at the interface of chemistry, biology, and medicine. Transcription factors have been among the most elusive targets in genetics and drug discovery, but the fields of chemical biology and genetics have evolved to a point where this task can be addressed. Herein we report the design, synthesis, and in vivo efficacy evaluation of a protein domain mimetic targeting the interaction of the p300/CREB coactivator with the transcription factor hypoxia-inducible factor-1α. Our results indicate that disrupting this interaction results in a rapid down-regulation of hypoxia-inducible genes critical for cancer progression. The observed effects were compound-specific and dose-dependent. Gene expression profiling with oligonucleotide microarrays revealed effective inhibition of hypoxia-inducible genes with relatively minimal perturbation of nontargeted signaling pathways. We observed remarkable efficacy of the compound HBS 1 in suppressing tumor growth in the fully established murine xenograft models of renal cell carcinoma of the clear cell type. Our results suggest that rationally designed synthetic mimics of protein subdomains that target the transcription factor-coactivator interfaces represent a unique approach for in vivo modulation of oncogenic signaling and arresting tumor growth.

Significance

Protein–protein interactions are attractive targets for interfering with processes leading to disease states. Proteins often use folded domains or secondary structures to contact partner proteins. Synthetic molecules that mimic these domains could disrupt protein–protein contacts, thereby inhibiting formation of multiprotein complexes. This article describes protein domain mimetics (PDMs) that modulate interactions between two proteins that control expression of a multitude of genes under hypoxic environments, such as those found inside tumors. The low-oxygen conditions promote angiogenesis—process of formation of new blood vessels—that together with invasion and altered energy metabolism facilitates tumor growth. We find that the PDMs can control expression of target hypoxia-inducible genes in cell culture and reduce tumor burden in mice.

Author contributions: B.Z.O. and P.S.A. designed research; S.K., B.B.L., L.K.H., R.D., H.M., and N.J.T. performed research; B.Z.O. and P.S.A. analyzed data; and B.Z.O. and P.S.A. wrote the paper.

The authors declare no conflict of interest.

This Direct Submission article had a prearranged editor.

Data deposition: The gene expression profiling data reported in this manuscript have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE48002).

*S.K. and B.B.L. contributed equally to this work.

To whom correspondence may be addressed. E-mail: arora@nyu.edu or bogdan@usc.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312473110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1312473110

PNAS Early Edition | 1 of 6
Fig. 1. (A) Transcription of hypoxia-inducible genes is controlled by the interaction of HRE-bound HIF-1α/ARNT heterodimer with transcriptional coactivator p300/CBP. (B) Protein domain mimetics should competitively inhibit the interaction and associated gene expression. (C) The C-TADαβ domain of HIF-1α uses helical motifs to target the CH1 region of p300/CBP. HIF-1α is shown in gold and p300/CBP in gray (Protein Data Bank (PDB) ID code 1LBC).

αβ, from HIF-1α as key determinants for its recognition by p300 (Fig. 1C) (20, 21). Both αA and αB subdomains of HIF-1α C-TAD contain residues that contribute significantly to the complex formation, as shown by experimental mutagenesis studies (20–23). In earlier work (9), we stabilized the αA peptide sequence using the hydrogen bond surrogate (HBS) approach (24), which uses a carbon–carbon bond in place of the intramolecular hydrogen bond in α-helices. HBS helices have been shown to disrupt intracellular protein–protein interactions with high affinity and specificity (9, 25, 26). The αA mimetic was shown to down-regulate mRNA levels of VEGF and GLUT1, two genes under the control of HIF-1α, whereas the linear peptide mimic of αA remained inactive. Importantly, the compound did not display significant toxicity compared with chetomin (27), a small molecule known to target the same interaction. The HBS αA mimic provided a strong proof of principle that mimics of HIF-1α C-TAD helices can down-regulate transcription of hypoxia-inducible genes. However, despite its efficacy in cell-free and cell culture assays, we excluded this molecule from further studies due to the concern about the stability and reactivity of Cys800 residue present in this sequence that forms a key contact with the CH1 domain of p300, and hence was required for function (22). In the present study we explored the ability of αB mimics to inhibit the target interaction control gene expression in cell culture and test its efficacy in murine tumor xenograft models.

A key premise of rational design is that, unlike high-throughput screening efforts, a handful of molecules that fit certain criteria need to be designed de novo. In an ideal scenario, these predictions would lead to both a potent ligand for the target receptor and a compound serving as a negative control, featuring minor alterations but binding the same protein with reduced affinity. Such a result would confirm the fundamental design principles while allowing the specificity of designed compounds to be evaluated. Accordingly, we conceived two stabilized helices based on the wild-type sequence, along with the unconstrained control (Fig. 2). HBS 1 is a direct mimic of HIF-1αLeu817–824 with the exception of Leu819, which was changed to an alanine residue to streamline synthetic effort; coupling of an N-alkyl alanine to the next residue is more efficient than N-alkyl leucine. Computational alanine scanning mutagenesis analysis suggests that Leu819 is not a significant contributor to binding energy as opposed to Leu818, Leu822, Asp823, and Gln824 (SI Appendix, Table S1). HBS 2 was designed to be a specificity control in which the critical Leu822 residue is replaced with an alanine; based on computational data, HBS 2 would be expected to bind CH1 with an order of magnitude weaker binding affinity than 1. Peptide 3 is an unconstrained analog of HBS 1, allowing us to evaluate the effect of helix stabilization on the activity of the compounds. The HBS helices were synthesized, purified, and characterized as described (SI Appendix, Figs. S1 and S2) (28). The constrained peptides showed characteristic α-helical circular dichroism spectroscopy signatures in aqueous buffers compared with the unconstrained derivative, which displays no discernible helicity, as expected for a very short peptide (SI Appendix, Fig. S3) (24).

Designed Ligands Target p300-CH1 in a Predictive Manner. The CH1 domain of p300/CBP is stabilized by three zinc ions. Prior NMR structural studies have shown that the purified protein can rapidly aggregate in a buffer with excess or deficient Zn2+ (29, 30). Attempts to evaluate binding of compounds with this protein repeatedly resulted in protein aggregation and precipitation, even at low micromolar protein concentrations. The difficulty in working with this protein is directly correlated with its expression protocol, and slight changes in the concentration of Zn2+ in the bacterial growth media, supplemented with ZnSO4, could lead to purified protein samples that bind with different binding affinities (Kd ~30 nM to 2 μM) to HIF-1α C-TADαβ–βα. To overcome this variability, we prepared 15N-labeled protein and monitored peak dispersion (and protein folding) by 1H-15N heteronuclear single-quantum coherence (HSQC) NMR experiments (SI Appendix, Fig. S4). This 15N-labeled, properly folded protein with the optimal levels of zinc shows a diminished tendency to aggregate and was used for binding assays.

The affinity of peptides for the 15N-labeled p300 CH1 domain was evaluated using tryptophan fluorescence spectroscopy. The intrinsic fluorescence intensity of Trp403 has been shown to be a sensitive probe for CH1 folding (29). Significantly, this tryptophan lies in the αB binding pocket of p300/CBP, providing a unique probe for interrogating direct binding of αB mimics (SI Appendix, Fig. S5A). Using this fluorescence method, we calculate that HBS 1 binds to p300-CH1 with a Kd of 690 ± 25 nM (Fig. S4 and SI Appendix, Fig. S5B). For comparison, HIF-1α C-TADαβ–βα binds p300-CH1 with a Kd of 38 ± 0.14 nM under...
C-TAD to CH1 and showed no activity in these assays, whereas μ2,820 C-TAD SLC2A1/GLUT-1 inducible transcription in this cell line. ± by 50 ± 2 protein were unaffected by the treatment (1 reduced expression levels = to inhibit hypoxia-induced tran-
to bind puri
were found to be less SLC2A1 complex formation.
fl = are color-mapped, matching the magnitude of the
826 (37), the hypoxia-
PNAS Early Edition results in a statistically signi-
fl supports the view that CH1 has a stable conforma-
fi 3
is an unconstrained analog of HBS
with the CH1 gene in the same cell line (Fig. 4
C-TAD and at
SI Appendix 3.5 and
fl 1 in hypoxic cells treated with HBS
or peptide
SI Appendix A reduced expression levels of
reproducible inhibition of the complex, as expected from their weaker affinity for CH1 domain.

HBS 1 Disrupts the HIF-1α/p300-CH1 Complex in Vitro. A fluorescence polarization assay was used to evaluate the ability of HBS 1 to inhibit the binding of fluorescein-labeled HIF-1α C-TAD786–826 domain to p300-CH1 (32, 33). Addition of 1 to the preformed protein complex provided a concentration-dependent decrease in fluorescence polarization, with an inhibitory constant, \(K_i = 3.5 \pm 1.2 \mu M \) (Fig. 3C). Titration of HBS 2 or peptide 3 did not lead to reproducible inhibition of the complex, as expected from their weaker affinity for CH1 domain.

HBS 1 Down-Regulates Hypoxia-Inducible Gene Expression and VEGF Protein Levels in Hypoxic Cells. Based on the confirmed ability of HBS 1 to bind purified p300-CH1 and disrupt CH1/HIF-1α C-TAD786–826 complex formation, we set out to evaluate its potential to down-regulate the hypoxia-inducible promoter activity in a luciferase-based reporter gene system. A construct containing five tandem repeats of the HRE consensus sequence found in the VEGF promoter (TACGTTGGG), cloned upstream of the human CMV minimal promoter was used to drive expression of firefly luciferase (34). This construct was stably transfected into a triple-negative breast cancer cell line MDA-MB-231 that does not express estrogen or progesterone receptors or exhibit human epithelial growth factor receptor 2 (Her2/Neu) amplification. The cells were subsequently treated with the peptides; hypoxia was mimicked by placing cells into a GasPak EZ pouch. Under these conditions, treatment with HBS 1 at a concentration of 50 μM reduced luciferase expression by 25% (SI Appendix, Fig. S8). At the same concentrations, specificity control HBS 2 and unconstrained peptide 3 were found to be less effective. Despite the moderate extent of inhibition of the promoter activity, we were encouraged by these results because MDA-MB-231 cells are aggressive and under hypoxia conditions exhibit confluence-dependent resistance to some anticancer drugs (35). Our luciferase reporter assays suggest that treatment with HBS 1 results in a statistically significant down-regulation of HIF-1α inducible transcription in this cell line.

To exclude the possibility that the observed down-regulation in the expression of hypoxia-inducible genes was due to a change in the levels of HIF-1α protein itself, we performed a Western blot analysis of HIF-1α levels with HBS 1, HBS 2, and peptide 3. HBS 1 protein was not detectable under normoxia, but is strongly induced under hypoxia mimetic conditions. As expected, the levels of induced HIF-1α protein were unaffected by the treatment with HBS 1 (SI Appendix, Fig. S9).

The ability of HBS 1 and 2 to inhibit hypoxia-induced transcrip-
tion of target genes (VEGFA, SLC2A1/GLUT-1, and LOX) was evaluated using real-time quantitative RT-PCR (qRT-PCR) assays (SI Appendix). The data from qRT-PCR experiments are presented in Fig. 4. HBS 1 reduced expression levels of VEGF by 50% at 10 μM and greater than 60% at 50 μM, showing marked dose dependence. In contrast, HBS 2 reduced expression levels of this gene by only 10% at 50 μM, and peptide 3 was completely ineffective even at 50-μM concentration (Fig. 4A). Next, we determined if this inhibition could be observed for other therapeutically relevant hypoxia-inducible genes. We examined the expression of the SLC2A1 (GLUT1) gene (36), one of the markers of glycolysis in tumors, and LOX (37), the hypoxia-inducible gene that has been shown to promote metastasis. In HeLa cells under hypoxia conditions, HBS 1 showed dose-dependent inhibition of SLC2A1 by 50–60%, comparable to that of VEGF gene in the same cell line (Fig. 4B). Similarly, HBS 1 significantly down-regulated levels of expression of the LOX gene in a dose-dependent manner (55% and 70%, respectively, Fig. 4C); HBS 2 showed no activity in these assays, whereas peptide 3 had reduced activity of 25%. To rule out the possibility that the compounds are only efficacious under deferoxamine

These conditions. The binding affinity of HIF-1α C-TAD to CH1 in this assay is consistent with that obtained from a fluorescence polarization assay using fluorescein-labeled HIF-1α C-TAD (SI Appendix, Fig. S6) and those reported in the literature with isothermal titration microcalorimetry (21). The designed speci-
cificity control, HBS 2, targets CH1 with fourfold weaker binding affinity (Kd = 2.820 ± 140 nM), supporting the computational predictions. Peptide 3 is an unconstrained analog of HBS 1 and binds CH1 domain with a Kd of 6,060 ± 320 nM. The results indicate that stabilization of the peptide conformation offers a ninefold increase in binding affinity.

To further characterize the interaction of HBS 1 with the CH1 domain, we performed 1H-15N HSQC NMR titration experi-
ments with uniformly 15N-labeled CH1. Addition of HBS 1 to 69 μM CH1:HBS 1 ratios of 1:1, 1.3, 1.5, and 1:10 resulted in a concentration-dependent shift in resonances of several CH1 residues (Fig. 3B and SI Appendix, Fig. S7). Specifically, addition of HBS 1 leads to shifts in resonances of residues corresponding to the cleft into which the αB helix of HIF binds. This cleft includes Trp403, and chemical shift perturbations observed for this residue support the results of the fluorescence titration experiments. The CH1 domain binds to numerous proteins and has been termed a scaffold for protein folding (20, 31). Earlier NMR studies have suggested that Zn2+ bound CH1 has a rela-
tively rigid structure (30), although evidence of plasticity in CH1 has also been discussed (20, 29). Our HSQC titration experiment with HBS 1 supports the view that CH1 has a stable conformation that does not reorganize substantially, at least upon binding of small ligands. Titration of HBS 1 to zinc-bound CH1 led to a relatively large shift in the side-chain indole NH of W403 compared with the backbone amide proton of this residue, sug-
gest that side-chain repacking governs binding of these part-
ers (Fig. 3B and SI Appendix, Fig. S7) (30).
gene expression under 0.01, * and, to some extent HBS gene in HeLa cells under two mimetics should manifest their function.

(HBS)-mimicked hypoxia, we compared the efficacies of the HBS peptides in down-regulating VEGF gene expression under two different hypoxia mimetic conditions: DFO and prolonged incubation in an anaerobic pouch. Under both conditions, HBS 1 showed dose-dependent inhibition of VEGF expression (Fig. 4D). Next, we assessed the effect of HBS 1 treatment on the levels of secreted VEGF protein. An ELISA shows that HBS 1 down-regulates VEGF protein levels in HeLa cells in a dose-dependent manner (SI Appendix, Fig. S10).

HBS 1 is an efficient modulator of contacts between HIF-1α and p300/CBP. Known inhibitors of this interaction typically function allosterically, by inducing unfolding of p300/CBP through abstraction of zinc ions (27, 33, 38, 39), which could lead to non-specific abstraction of metal ions from other biomolecules. We predicted that our HIF-1α mimetics should manifest their function in a more specific manner, and should not be generally cytotoxic (9). Cell viability assays confirm this hypothesis; we find that HBS 1 is essentially nontoxic within the entire range of tested concentrations (1–100 μM). The expression profile of cells treated with HBS 1 was different from the profile of cells treated with DFO under the conditions of the analysis and, as mentioned above, is different from the profile of cells treated with HBS 2 despite the structural similarity between the two compounds. As expected, the expression profile of the cells is significantly different from the other three profiles. Analysis of transcripts affected by both HBS 1 and HBS 2 shows that only 28 and five transcripts are commonly down- and up-regulated, respectively, by at least 1.1-fold. It is not surprising that there is some overlap in genes affected by both compounds given the complexity of cellular signaling pathways involved in the hypoxic response. We found that DFO induced the expression of 45 transcripts by at least fourfold; HBS 1 was retained in plasma at much higher concentrations compared with peptide 3 during the same time intervals, suggesting that the internally constrained structure of HBS 1 favorably impacts its serum stability. This observation is consistent with the fact that proteases largely bind and cleave peptides in extended conformations (40); the plasma stability of HBS 1 is also consistent with the published stability of hydrocarbon-bridged helices (3).

For efficacy studies we used the CrTac:NCr-Foo1imm mouse (Tacnic, Inc.). We selected 786-O RCC of the clear cell type cell line because of its high HIF levels due to a mutation in the VHL gene. Measurable tumors (~100 mm³) grew in as little as 2–3 wk after the inoculation of 2 × 10³ cells into the either flank of mice. Mice then were separated into two experimental groups; one group was treated with HBS 1 and the second group was not treated (control). We estimated 13 mg/kg as an acceptable dose, based on the concentration of HBS 1 required for >50% VEGF and LOX mRNA down-regulation in cell culture and plasma concentrations of the compounds (vide supra). Tumor sizes were measured in accordance with the literature recommendations (SI Appendix) (41). Throughout the course of the treatment against the experiment endpoint, mice treated with HBS 1 had smaller tumors with median tumor volume reduction of 53% compared with the mice from the control group (Fig. 6A). Both control group and mice treated with HBS 1 under this regimen showed no signs of distress or weight loss (Fig. 6B). To rule out the

Antitumor Activity of HBS 1 in Mouse Xenograft Models. We used a mouse xenograft tumor model to assess the in vivo efficacy of HBS 1. We first measured the relative plasma stabilities of HBS 1 and peptide 3 in mice. In this experiment, female BALB/c mice were injected with either HBS 1 or peptide 3 at a dose of 1 mg/kg and killed at various time points. Blood was collected and the plasma concentration profiles for HBS 1 and peptide 3 were determined, as shown in SI Appendix, Fig. S13. The plasma levels of the compounds exhibited a biexponential pattern of decay, HBS 1 was retained in plasma at much higher concentrations compared with peptide 3 during the same time intervals, suggesting that the internally constrained structure of HBS 1 favorably impacts its serum stability. This observation is consistent with the fact that proteases largely bind and cleave peptides in extended conformations (40); the plasma stability of HBS 1 is also consistent with the published stability of hydrocarbon-bridged helices (3).

Gene Expression Profiling. Proteins p300 and CBP are pleiotropic multidomain coactivators that directly interact with multiple transcription factors (31). One potential limitation of the use of coactivator-targeting ligands to control gene expression is specificity, due to the fact that the compounds could lead to inhibition of large numbers of genes that depend on the function of p300 or CBP. To evaluate the genome-wide effects of HBS 1 and 2 under hypoxia conditions, we used Affymetrix Human Gene ST 1.0 arrays containing oligonucleotide sequences representing over 28,000 transcripts; gene expression levels were normalized to DFO-treated cells.

In hypoxic cells, clustering identified over 5,000 genes that changed in expression levels under one of the specified treatments: DFO, DFO + HBS 1, or DFO + HBS 2 (SI Appendix, Fig. S12). Treatment with HBS 1 affected the expression of 122 transcripts by at least 1.1-fold (P < 0.05), whereas at the same threshold, control HBS 2 affected expression of 155 transcripts (Fig. 5 A and C). Remarkably, only 33 transcripts were overlapping, indicating that the subtle difference in structure between these two compounds results in a significant difference in genome-wide effects. For comparison, DFO treatment alone affected the expression of 368 transcripts. Clustering analysis was performed to identify similarities in the expression profiles between the different treatments (Fig. 5A). The expression profile of cells treated with HBS 1 resembles the profile of cells treated with DFO under the conditions of the analysis and, as mentioned above, is different from the profile of cells treated with HBS 2 despite the structural similarity between the two compounds. As expected, the expression profile of the cells is significantly different from the other three profiles. Analysis of transcripts affected by both HBS 1 and HBS 2 shows that only 28 and five transcripts are commonly down- and up-regulated, respectively, by at least 1.1-fold. It is not surprising that there is some overlap in genes affected by both compounds given the complexity of cellular signaling pathways involved in the hypoxic response. We found that DFO induced the expression of 45 transcripts by at least fourfold; HBS 1 was retained in plasma at much higher concentrations compared with peptide 3 during the same time intervals, suggesting that the internally constrained structure of HBS 1 favorably impacts its serum stability. This observation is consistent with the fact that proteases largely bind and cleave peptides in extended conformations (40); the plasma stability of HBS 1 is also consistent with the published stability of hydrocarbon-bridged helices (3).

For efficacy studies we used the CrTac:NCr-Foo1imm mouse (Tacnic, Inc.). We selected 786-O RCC of the clear cell type cell line because of its high HIF levels due to a mutation in the VHL gene. Measurable tumors (~100 mm³) grew in as little as 2–3 wk after the inoculation of 2 × 10³ cells into the either flank of mice. Mice then were separated into two experimental groups; one group was treated with HBS 1 and the second group was not treated (control). We estimated 13 mg/kg as an acceptable dose, based on the concentration of HBS 1 required for >50% VEGF and LOX mRNA down-regulation in cell culture and plasma concentrations of the compounds (vide supra). Tumor sizes were measured in accordance with the literature recommendations (SI Appendix) (41). Throughout the course of the treatment against the experiment endpoint, mice treated with HBS 1 had smaller tumors with median tumor volume reduction of 53% compared with the mice from the control group (Fig. 6A). Both control group and mice treated with HBS 1 under this regimen showed no signs of distress or weight loss (Fig. 6B). To rule out the
possibility that treatment resulted in a reduction of the size of the main tumor but concurrently resulted in an elevated rate of metastasis, as reported with some anti-VEGF therapeutics (42), the animals were injected with IR-783, a near-infrared contrast agent that targets tumors, circulating tumor cells, and metastases (43), and imaged from both sides using a small animal imager. The images show no detectable near-infrared (NIR) signal within the lymph nodes, brain, or other organs, and significantly reduced signal from the main tumor (Fig. 6C).

Discussion

Synthetic inhibitors that block the transactivation domains of transcription factors from contacting their cognate coactivators (3, 44–46), and programmable small molecules that sequence-specifically inhibit DNA–transcription factor interactions, provide powerful strategies for regulating gene expression (17, 47, 48). The blockade of transcription factor interactions can be especially attractive in targeting cellular pathways that promote oncogenic transformation and typically involve a large number of signaling proteins that ultimately converge on a much smaller set of oncogenic transcription factors (2). Given that both CBP and p300 regulate multiple signaling pathways, they provide an intriguing opportunity for an effective modulation of the expression of genes involved in cancer progression and metastasis (31). Our design strategy involves judicious mimicry of transcription factor fragments that contact p300/CBP to rationally develop artificial regulators of transcription (4, 5).

Our results indicate that synthetic helices that mimic protein subdomains bind their p300/CBP target with high affinity and disrupt the HIF-1α C-TAD–p300/CBP complex in vitro. Importantly, the designed compounds bound the target protein in a predictable manner; the single residue mutant HBS 2 shows an expected weaker affinity for CH1 compared with HBS 1. The CH1 binding site for HBS 1 was confirmed by NMR HSQC titration experiments. As anticipated based on fluorescence experiments, HBS 1 causes a concentration-dependent chemical perturbation shift for the side chain ε-NH of Trp403. This result supports our design principle that a locked helix can occupy the binding clefts of individual protein α-helices (5, 25). The in vitro assays showed significant reduction in promoter activity and effective down-regulation of the expression of HIF-1α-inducible genes responsible for promoting angiogenesis, invasion, and glycolysis. In addition, the HBS 1-mediated transcriptional blockade of VEGF correlates with decreased levels of its secreted protein product, suggesting that compensatory cellular stress-response mechanisms, such as internal ribosome entry sites or mechanisms enhancing protein translation, do not affect the observed down-regulation in expression. Therefore, reducing the cellular mRNA levels of HIF-1α target genes with HBS 1 could be an effective means of attenuating hypoxia-inducible signaling in tumors.

Comparative analysis of the genome-wide effects of the HBS 1 and 2 provided additional insights into the ability of the compounds to disrupt transcriptional activity of hypoxia-inducible genes. Despite the similarity in structures, these compounds have
a very different impact on the level of expression of hypoxia-inducible genes and show distinct genome-wide effects. Treatment with 1 affects 122 genes (less than 0.5% of the entire transcriptome) at a fixed 1.1-fold threshold, with 92 hypoxia-inducible genes being down-regulated. Despite the fact that HBS 2 has a similar genome-wide impact at the same threshold, it does not affect a majority of hypoxia-inducible genes. Because many biological responses are threshold based, the observed decrease in transcriptional activity of primary hypoxia-inducible genes could have pronounced downstream effects on the levels of protein products of hypoxia-inducible transcription.

To assess the in vivo potential of HBS 1, murine tumor xenografts derived from the RCC of the clear cell type were treated with the compound. After five injections of HBS 1, the median tumor volume was reduced by 53% in the treated group. Importantly, the HBS 1 treatment did not cause measurable changes in animal body weight or other signs of toxicity in tumor-bearing animals, or increase the metastasis rate. Taken together, the results reported herein support the hypothesis that designed protein domain mimetics can provide valuable tools for probing the mechanisms of transcription. Because the p300/CBP pleiotropic coactivator system interacts with diverse transcription factors, it represents an excellent model system to assess the specificity of designed synthetic ligands in gene regulation. Future designs will address the possibility of targeting a desired region of a general coactivator as a means of selectively modulating genes under the control of a specific group of transcription factors. The strategy described herein provides a foundation for the development of next-generation genomic tools and, potentially, transcription-based therapies.

Methods
Synthesis and characterization of HBS 1 and 2, and peptide 3 can be found in SI Appendix. Detailed protocols for cloning and expression of the p300-CH1-GST protein, binding assays, cell viability assays, and luciferase expression assays are also included. Western blot analysis of HIF-1α levels, VEGF ELISAs, gene expression profiling, and in vivo efficacy are described in SI Appendix.

ACKNOWLEDGMENTS. The authors thank Maria Yamout (Wright group, The Scripps Research Institute) for advice on p300 expression; Jian-Ding Ren of the University of Southern California for help with plasma stability assays; and Daniela Buccella at New York University (NYU) for the use of the spectrophotometer. Financial support for this work was provided by US National Science Foundation CAREER Award CHE-1161644 (to B.Z.O.) and National Institutes of Health Grant R01GM073943 (to P.S.A.). The microarray analysis was performed at the Genome Technology Center, NYU School of Medicine, partially supported by NYU Cancer Center Support Grant P30CA16087-33.