Outline Today’s Lecture

- finish Euler Equations and Transversality Condition
- Principle of Optimality: Bellman’s Equation
- Study of Bellman equation with bounded F
- contraction mapping and theorem of the maximum

Introduction to Dynamic Optimization Nr. 2
Infinite Horizon $T = \infty$

$$V^*(x_0) = \sup_{\{x_{t+1}\}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t F(x_t, x_{t+1})$$

subject to,

$$x_{t+1} \in \Gamma(x_t)$$

(1)

with x_0 given

- $\sup \{}$ instead of $\max \{}$
- define $\{x'_{t+1}\}_{t=0}^\infty$ as a plan
- define $\Pi(x_0) \equiv \{\{x'_{t+1}\}_{t=0}^\infty | x'_{t+1} \in \Gamma(x'_t) \text{ and } x'_0 = x_0\}$
Assumptions

A1. $\Gamma (x)$ is non-empty for all $x \in X$
A2. $\lim_{T \to \infty} \sum_{t=0}^{T} \beta^t F(x_t, x_{t+1})$ exists for all $x \in \Pi (x_0)$
then problem is well defined
Recursive Formulation: Bellman Equation

- value function satisfies

\[
V^*(x_0) = \max_{\{x_{t+1}\}_{t=0}^{\infty} \atop x_{t+1} \in \Gamma(x_t)} \left\{ \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}) \right\}
\]

\[
= \max_{x_1 \in \Gamma(x_0)} \left\{ F(x_0, x_1) + \max_{\{x_{t+1}\}_{t=1}^{\infty} \atop x_{t+1} \in \Gamma(x_t)} \sum_{t=1}^{\infty} \beta^t F(x_t, x_{t+1}) \right\}
\]

\[
= \max_{x_1 \in \Gamma(x_0)} \left\{ F(x_0, x_1) + \beta \max_{\{x_{t+1}\}_{t=1}^{\infty} \atop x_{t+1} \in \Gamma(x_t)} \sum_{t=0}^{\infty} \beta^t F(x_{t+1}, x_{t+2}) \right\}
\]

\[
= \max_{x_1 \in \Gamma(x_0)} \left\{ F(x_0, x_1) + \beta V^*(x_1) \right\}
\]

continued...
• Idea: use BE to find value function V^* and policy function g [Principle of Optimality]
Outline Today’s Lecture

• housekeeping: ps#1 and recitation day/ theory general / web page

• finish Principle of Optimality:
 Sequence Problem \Longleftrightarrow solution to Bellman Equation
 (for values and plans)

• begin study of Bellman equation with bounded and continuous F

• tools: contraction mapping and theorem of the maximum
Sequence Problem vs. Functional Equation

- Sequence Problem: (SP)

\[V^*(x_0) = \sup \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}) \]

s.t. \(x_{t+1} \in \Gamma(x_t) \)

\(x_0 \) given

- ... more succinctly

\[V^*(x_0) = \sup_{\tilde{x} \in \Pi(x_0)} u(\tilde{x}) \] (SP)

- functional equation (FE) [this particular FE called Bellman Equation]

\[V(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta V(y) \} \] (FE)
Principle of Optimality

IDEA: use BE to find value function V^* and optimal plan x^*

- **Thm 4.2.** V^* defined by SP $\Rightarrow V^*$ solves FE
- **Thm 4.3.** V solves FE and $\Rightarrow V = V^*$
- **Thm 4.4.** $\tilde{x}^* \in \Pi (x_0)$ is optimal
 $\Rightarrow V^* (x^*_t) = F (x^*_t, x^*_{t+1}) + \beta V^* (x^*_{t+1})$
- **Thm 4.5.** $\tilde{x}^* \in \Pi (x_0)$ satisfies $V^* (x^*_t) = F (x^*_t, x^*_{t+1}) + \beta V^* (x^*_{t+1})$ and
 $\Rightarrow \tilde{x}^*$ is optimal
Why is this Progress?

- **intuition:** breaks planning horizon into two: ‘now’ and ‘then’
- **notation:** reduces unnecessary notation (especially with uncertainty)
- **analysis:** prove existence, uniqueness and properties of optimal policy (e.g. continuity, monotonicity, etc...)
- **computation:** associated numerical algorithm are powerful for many applications
Proof of Theorem 4.3 (max case)

Assume for any \(\tilde{x} \in \Pi (x_0) \)

\[
\lim_{T \to \infty} \beta^T V(x_T) = 0.
\]

BE implies

\[
V(x_0) \geq F(x_0, x_1) + \beta V(x_1), \text{ all } x_1 \in \Gamma(x_0)
\]

\[
= F(x_0, x^*_1) + \beta V(x^*_1), \text{ some } x^*_1 \in \Gamma(x_0)
\]

Substituting \(V(x_1) \):

\[
V(x_0) \geq F(x_0, x_1) + \beta F(x_1, x_2) + \beta^2 V(x_2), \text{ all } x \in \Pi(x_0)
\]

\[
= F(x_0, x^*_1) + \beta F(x^*_1, x^*_2) + \beta^2 V(x^*_2), \text{ some } x^* \in \Pi(x_0)
\]
Continue this way

\begin{align*}
V(x_0) & \geq \sum_{t=0}^{n} \beta^t F(x_t, x_{t+1}) + \beta^{n+1} V(x_{n+1}) \quad \text{for all } x \in \Pi(x_0) \\
& = \sum_{t=0}^{n} \beta^t F(x^*_t, x^*_{t+1}) + \beta^{n+1} V(x^*_{n+1}) \quad \text{for some } x^* \in \Pi(x_0)
\end{align*}

Since \(\beta^T V(x_T) \to 0 \), taking the limit \(n \to \infty \) on both sides of both expressions we conclude that:

\begin{align*}
V(x_0) & \geq u(\bar{x}) \quad \text{for all } \bar{x} \in \Pi(x_0) \\
V(x_0) & = u(\bar{x}^*) \quad \text{for some } \bar{x}^* \in \Pi(x_0)
\end{align*}
Bellman Equation as a Fixed Point

• define operator

\[T(f)(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta f(y) \} \]

• \(V \) solution of BE \(\iff \) \(V \) fixed point of \(T \) [i.e. \(TV = V \)]

Bounded Returns:

• if \(\|F\| < B \) and \(F \) and \(\Gamma \) are continuous: \(T \) maps continuous bounded functions into continuous bounded functions

• bounded returns \(\Rightarrow T \) is a Contraction Mapping \(\Rightarrow \) unique fixed point

• many other bonuses
Needed Tools

- Basic Real Analysis (section 3.1):
 \{vector, metric, noSLP, complete\} spaces
 cauchy sequences
 closed, compact, bounded sets
- Contraction Mapping Theorem (section 3.2)
- Theorem of the Maximum: study of RHS of Bellman equation (equivalently of T) (section 3.3)
Bellman Equation: Principle of Optimality

- Principle of Optimality idea: use the functional equation

\[V(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta V(y) \} \]

to find \(V^* \) and \(g \)

- note: nuisance subscripts \(t, t+1 \), dropped

- a solution is a function \(V(\cdot) \) the same on both sides

- IF BE has unique solution then \(V^* = V \)

- more generally the “right solution” to (BE) delivers \(V^* \)
Outline Today’s Lecture

- study Functional Equation (Bellman equation) with bounded and continuous F
- tools: contraction mapping and theorem of the maximum
Bellman Equation as a Fixed Point

- Define operator

\[T(f)(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta f(y) \} \]

- \(V \) solution of BE \(\iff \) \(V \) fixed point of \(T \) [i.e. \(TV = V \)]

Bounded Returns:

- If \(\|F\| < B \) and \(F \) and \(\Gamma \) are continuous: \(T \) maps continuous bounded functions into continuous bounded functions

- Bounded returns \(\Rightarrow \) \(T \) is a Contraction Mapping \(\Rightarrow \) unique fixed point

- Many other bonuses
Our Favorite Metric Space

\[S = \left\{ f : X \to R, \ f \text{ is continuous, and } \|f\| \equiv \sup_{x \in X} |f(x)| < \infty \right\} \]

with

\[\rho (f, g) = \|f - g\| \equiv \sup_{x \in X} |f(x) - g(x)| \]

Definition. A linear space \(S \) is complete if any Cauchy sequence converges. For a definition of a Cauchy sequence and examples of complete metric spaces see SLP.

Theorem. The set of bounded and continuous functions is Complete. See SLP.
Definition. Let (S, ρ) be a metric space. Let $T : S \rightarrow S$ be an operator. T is a contraction with modulus $\beta \in (0, 1)$

$$\rho (Tx, Ty) \leq \beta \rho (x, y)$$

for any x, y in S.
Contraction Mapping Theorem

Theorem (CMThm). If T is a contraction in (S, ρ) with modulus β, then (i) there is a unique fixed point $s^* \in S$,

$$s^* = Ts^*$$

and (ii) iterations of T converge to the fixed point

$$\rho (T^n s_0, s^*) \leq \beta^n \rho (s_0, s^*)$$

for any $s_0 \in S$, where $T^{n+1} (s) = T(T^n (s))$.

Introduction to Dynamic Optimization
Nr. 6
CMThm – Proof

for (i) 1st step: construct fixed point \(s^* \)

take any \(s_0 \in S \) define \(\{s_n\} \) by \(s_{n+1} = Ts_n \) then

\[
\rho(s_2, s_1) = \rho(Ts_1, Ts_0) \leq \beta \rho(s_1, s_0)
\]

generalizing \(\rho(s_{n+1}, s_n) \leq \beta^n \rho(s_1, s_0) \) then, for \(m > n \)

\[
\rho(s_m, s_n) \leq \rho(s_m, s_{m-1}) + \rho(s_{m-1}, s_{m-2}) + \cdots + \rho(s_{n+1}, s_n)
\]
\[
\leq [\beta^{m-1} + \beta^{m-2} + \cdots + \beta^n] \rho(s_1, s_0)
\]
\[
\leq \beta^n [\beta^{m-n-1} + \beta^{m-n-2} + \cdots + 1] \rho(s_1, s_0)
\]
\[
\leq \frac{\beta^n}{1 - \beta} \rho(s_1, s_0)
\]

thus \(\{s_n\} \) is cauchy. hence \(s_n \to s^* \)
2nd step: show \(s^* = Ts^* \)

\[
\rho(Ts^*, s^*) \leq \rho(Ts^*, s_n) + \rho(s^*, s_n) \\
\leq \beta \rho(s^*, s_{n-1}) + \rho(s^*, s_n) \rightarrow 0
\]

3rd step: \(s^* \) is unique. \(Ts_1^* = s_1^* \) and \(s_2^* = Ts_2^* \)

\[
0 \leq a = \rho(s_1^*, s_2^*) = \rho(Ts_1^*, Ts_2^*) \leq \beta \rho(s_1^*, s_2^*) = \beta a
\]

only possible if \(a = 0 \Rightarrow s_1^* = s_2^* \).

Finally, as for (ii):

\[
\rho(T^n s_0, s^*) = \rho(T^n s_0, Ts^*) \leq \beta \rho(T^{n-1} s_0, s^*) \leq \cdots \leq \beta^n \rho(s_0, s^*)
\]
Corollary. Let S be a complete metric space, let $S' \subset S$ and S' close. Let T be a contraction on S and let $s^* = Ts^*$. Assume that

$$T(S') \subset S', \quad \text{i.e. if } s' \in S, \text{ then } T(s') \in S'$$

then $s^* \in S'$. Moreover, if $S'' \subset S'$ and

$$T(S') \subset S'', \quad \text{i.e. if } s' \in S', \text{ then } T(s') \in S''$$

then $s^* \in S''$.
Blackwell’s sufficient conditions.
Let S be the space of bounded functions on X, and $\| \cdot \|$ be given by the sup norm. Let $T : S \to S$. Assume that (i) T is monotone, that is,

$$Tf(x) \leq Tg(x)$$

for any $x \in X$ and g, f such that $f(x) \geq g(x)$ for all $x \in X$, and (ii) T discounts, that is, there is a $\beta \in (0, 1)$ such that for any $a \in R_+$,

$$T(f + a)(x) \leq Tf(x) + a\beta$$

for all $x \in X$. Then T is a contraction.
Proof. By definition

\[f = g + f - g \]

and using the definition of \(\| \cdot \| \),

\[f(x) \leq g(x) + \| f - g \| \]

then by monotonicity i)

\[Tf \leq T(g + \| f - g \|) \]

and by discounting ii) setting \(a = \| f - g \| \)

\[Tf \leq T(g) + \beta \| f - g \|. \]

Reversing the roles of \(f \) and \(g \) :

\[Tg \leq T(f) + \beta \| f - g \| \]

\[\Rightarrow \| Tf - Tg \| \leq \beta \| f - g \| \]
Bellman equation application

\[(Tv)(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta v(y) \}\]

Assume that \(F\) is bounded and continuous and that \(\Gamma\) is continuous and has compact range.

Theorem. \(T\) maps the set of continuous and bounded functions \(S\) into itself. Moreover \(T\) is a contraction.
Proof. That T maps the set of continuous and bounded follow from the Theorem of Maximum (we do this next).
That T is a contraction follows since T satisfies the Blackwell sufficient conditions.
T satisfies the Blackwell sufficient conditions. For monotonicity, notice that for $f \geq v$

\[
Tv(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta v(y)\}
\]
\[
= F(x, g(x)) + \beta v(g(x))
\]
\[
\leq \{F(x, g(y)) + \beta f(g(x))\}
\]
\[
\leq \max_{y \in \Gamma(x)} \{F(x, y) + \beta f(y)\} = Tf(x)
\]

A similar argument follows for discounting: for $a > 0$

\[
T(v + a)(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta (v(y) + a)\}
\]
\[
= \max_{y \in \Gamma(x)} \{F(x, y) + \beta v(y)\} + \beta a = T(v)(x) + \beta a.
\]
Theorem of the Maximum

- want T to map continuous function into continuous functions

$$ (Tv)(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta v(y) \} $$

- want to learn about optimal policy of RHS of Bellman

$$ G(x) = \arg \max_{y \in \Gamma(x)} \{ F(x, y) + \beta v(y) \} $$

- First, continuity concepts for correspondences
- ... then, a few example maximizations
- ... finally, Theorem of the Maximum
assume Γ is non-empty and compact valued (the set $\Gamma(x)$ is non empty and compact for all $x \in X$)

Upper Hemi Continuity (u.h.c.) at x: for any pair of sequences $\{x_n\}$ and $\{y_n\}$ with $x_n \to x$ and $x_n \in \Gamma(y_n)$ there exists a subsequence of $\{y_n\}$ that converges to a point $y \in \Gamma(x)$.

Lower Hemi Continuity (l.h.c.) at x: for any sequence $\{x_n\}$ with $x_n \to x$ and for every $y \in \Gamma(x)$ there exists a sequence $\{y_n\}$ with $x_n \in \Gamma(y_n)$ such that $y_n \to y$.

Continuous at x: if Γ is both upper and lower hemi continuous at x
Max Examples

\[h(x) = \max_{y \in \Gamma(x)} f(x, y) \]

\[G(x) = \arg \max_{y \in \Gamma(x)} f(x, y) \]

ex 1: \(f(x, y) = xy; \ X = [-1, 1]; \ \Gamma(x) = X. \)

\[G(x) = \begin{cases}
\{ -1 \} & x < 0 \\
[-1, 1] & x = 0 \\
\{ 1 \} & x > 0
\end{cases} \]

\[h(x) = |x| \]

continued...
ex 2: $f(x, y) = xy^2$, $X = [-1, 1]$; $\Gamma(x) = X$

\[
G(x) = \begin{cases}
\{0\} & x < 0 \\
[-1, 1] & x = 0 \\
\{-1, 1\} & x > 0
\end{cases}
\]

$h(x) = \max\{0, x\}$
Theorem of the Maximum

Define:

\[h(x) = \max_{y \in \Gamma(x)} f(x, y) \]

\[G(x) = \arg \max_{y \in \Gamma(x)} f(x, y) \]

\[= \{ y \in \Gamma(x) : h(x) = f(x, y) \} \]

Theorem. (Berge) Let \(X \subset \mathbb{R}^l \) and \(Y \subset \mathbb{R}^m \). Let \(f : X \times Y \rightarrow \mathbb{R} \) be continuous and \(\Gamma : X \rightarrow Y \) be compact-valued and continuous. Then \(h : X \rightarrow \mathbb{R} \) is continuous and \(G : X \rightarrow Y \) is non-empty, compact valued, and u.h.c.
Theorem. Suppose \(\{ f_n(x,y) \} \) and \(f(x,y) \) are concave in \(y \) and \(f_n \rightarrow f \) in the sup-norm (uniformly). Define

\[
 g_n(x) = \arg \max_{y \in \Gamma(x)} f_n(x,y)
\]

\[
 g(x) = \arg \max_{y \in \Gamma(x)} f(x,y)
\]

then \(g_n(x) \rightarrow g(x) \) for all \(x \) (pointwise convergence); if \(X \) is compact then the convergence is uniform.

\[\lim \max \rightarrow \max \lim \]
Monotonicity of v^*

Theorem. Assume that $F(\cdot, y)$ is increasing, that Γ is increasing, i.e.

$$\Gamma(x) \subset \Gamma(x')$$

for $x \leq x'$. Then, the unique fixed point v^* satisfying $v^* = Tv^*$ is increasing. If $F(\cdot, y)$ is strictly increasing, so is v^*.

Introduction to Dynamic Optimization Nr. 19
Proof

By the corollary of the CMThm, it suffices to show \(Tf \) is increasing if \(f \) is increasing. Let \(x \leq x' \):

\[
Tf (x) = \max_{y \in \Gamma (x)} \{ F (x, y) + \beta f (y) \} \\
= F (x, y^*) + \beta f (y^*) \text{ for some } y^* \in \Gamma (x) \\
\leq F (x', y^*) + \beta f (y^*)
\]

since \(y^* \in \Gamma (x) \subset \Gamma (x') \)

\[
\leq \max_{y \in \Gamma (x')} \{ F (x, y) + \beta f (y) \} = Tf (x')
\]

If \(F (\cdot, y) \) is strictly increasing

\[
F (x, y^*) + \beta f (y^*) < F (x', y^*) + \beta f (y^*).
\]
Concavity (or strict) concavity of \(v^* \)

Theorem. Assume that \(X \) is convex, \(\Gamma \) is concave, i.e. \(y \in \Gamma (x) \), \(y' \in \Gamma (x') \) implies that

\[
y^\theta \equiv \theta y' + (1 - \theta) y \in \Gamma (\theta x' + (1 - \theta) x) \equiv \Gamma (x^\theta)
\]

for any \(x, x' \in X \) and \(\theta \in (0, 1) \). Finally assume that \(F \) is concave in \((x, y) \). Then, the fixed point \(v^* \) satisfying \(v^* = Tv^* \) is concave in \(x \). Moreover, if \(F (\cdot, y) \) is strictly concave, so is \(v^* \).
Differentiability

• can’t use same strategy: space of differentiable functions is not closed
• many envelope theorems
• Formula: if $h(x)$ is differentiable and y is interior then

$$h'(x) = f_x(x, y)$$

right value... but is h differentiable?

• one answer (Demand Theory) relies on f.o.c. and assuming twice differentiability of f

• won’t work for us since $f = F(x,y) + \beta V(y)$ and we don’t even know if f is once differentiable! → going in circles
First a Lemma...

Lemma. Suppose $v(x)$ is concave and that there exists $w(x)$ such that $w(x) \leq v(x)$ and $v(x_0) = w(x_0)$ in some neighborhood D of x_0 and w is differentiable at x_0 ($w'(x_0)$ exists) then v is differentiable at x_0 and $v'(x_0) = w'(x_0)$.

Proof. Since v is concave it has at least one subgradient p at x_0:

$$w(x) - w(x_0) \leq v(x) - v(x_0) \leq p \cdot (x - x_0)$$

Thus a subgradient of v is also a subgradient of w. But w has a unique subgradient equal to $w'(x_0)$. \square
Now a Theorem

Theorem. Suppose F is strictly concave and Γ is convex. If $x_0 \in \text{int}(X)$ and $g(x_0) \in \text{int}(\Gamma(x_0))$ then the fixed point of T, V, is differentiable at x and

$$V'(x) = F_x(x, g(x))$$

Proof. We know V is concave. Since $x_0 \in \text{int}(X)$ and $g(x_0) \in \text{int}(\Gamma(x_0))$ then $g(x_0) \in \text{int}(\Gamma(x))$ for $x \in D$ a neighborhood of x_0 then

$$W(x) = F(x, g(x_0)) + \beta V(g(x_0))$$

and $W(x) \leq V(x)$ and $W(x_0) = V(x_0)$ and $W'(x_0) = F_x(x_0, g(x_0))$ so the result follows from the lemma. \[\square\]
Recursive Methods
Outline Today’s Lecture

- finish off: theorem of the maximum
- Bellman equation with bounded and continuous F
- differentiability of value function
- application: neoclassical growth model
- homogenous and unbounded returns, more applications
Our Favorite Metric Space

\[S = \left\{ f : X \to \mathbb{R}, \ f \text{ is continuous, and } \| f \| \equiv \sup_{x \in X} |f(x)| < \infty \right\} \]

with

\[\rho (f, g) = \| f - g \| \equiv \sup_{x \in X} |f(x) - g(x)| \]

\[(Tv)(x) = \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta v(y) \right\} \]

Assume that \(F \) is bounded and continuous and that \(\Gamma \) is continuous and has compact range.

Theorem 4.6. \(T \) maps the set of continuous and bounded functions \(S \) into itself. Moreover \(T \) is a contraction.
Proof. That T maps the set of continuous and bounded follow from the Theorem of Maximum (we do this next)
That T is a contraction \rightarrow Blackwell sufficient conditions
\rightarrowmonotonicity, notice that for $f \geq v$

\[
Tv(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta v(y)\}
\]

\[
= F(x, g(x)) + \beta v(g(x))
\]

\[
\leq \{F(x, g(y)) + \beta f(g(x))\}
\]

\[
\leq \max_{y \in \Gamma(x)} \{F(x, y) + \beta f(y)\} = Tf(x)
\]

\rightarrowdiscounting: for $a > 0$

\[
T(v + a)(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta(v(y) + a)\}
\]

\[
= \max_{y \in \Gamma(x)} \{F(x, y) + \beta v(y)\} + \beta a = T(v)(x) + \beta a.
\]
Theorem of the Maximum

• want T to map continuous functions into continuous functions

\[(Tv)(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta v(y)\}\]

• want to learn about optimal policy of RHS of Bellman

\[G(x) = \arg \max_{y \in \Gamma(x)} \{F(x, y) + \beta v(y)\}\]

• First, continuity concepts for correspondences
• ... then, a few example maximizations
• ... finally, Theorem of the Maximum
Continuity Notions for Correspondences

assume Γ is non-empty and compact valued (the set $\Gamma(x)$ is non empty and compact for all $x \in X$)

Upper Hemi Continuity (u.h.c.) at x: for any pair of sequences $\{x_n\}$ and $\{y_n\}$ with $x_n \to x$ and $x_n \in \Gamma(y_n)$ there exists a subsequence of $\{y_n\}$ that converges to a point $y \in \Gamma(x)$.

Lower Hemi Continuity (l.h.c.) at x: for any sequence $\{x_n\}$ with $x_n \to x$ and for every $y \in \Gamma(x)$ there exists a sequence $\{y_n\}$ with $x_n \in \Gamma(y_n)$ such that $y_n \to y$.

Continuous at x: if Γ is both upper and lower hemi continuous at x
Max Examples

\[h(x) = \max_{y \in \Gamma(x)} f(x, y) \]
\[G(x) = \arg \max_{y \in \Gamma(x)} f(x, y) \]

ex 1: \(f(x, y) = xy; \; X = [-1, 1]; \; \Gamma(x) = X. \)

\[G(x) = \begin{cases}
\{-1\} & x < 0 \\
[-1, 1] & x = 0 \\
\{1\} & x > 0
\end{cases} \]
\[h(x) = |x| \]

continued...
ex 2: \(f(x, y) = xy^2; \ X = [-1, 1]; \ \Gamma(x) = X \)

\[
G(x) = \begin{cases}
\{0\} & x < 0 \\
[-1, 1] & x = 0 \\
\{-1, 1\} & x > 0
\end{cases}
\]

\[
h(x) = \max \{0, x\}
\]
Theorem of the Maximum

Define:

\[h(x) = \max_{y \in \Gamma(x)} f(x, y) \]

\[G(x) = \arg \max_{y \in \Gamma(x)} f(x, y) \]

\[= \{ y \in \Gamma(x) : h(x) = f(x, y) \} \]

Theorem 3.6. (Berge) Let \(X \subset \mathbb{R}^l \) and \(Y \subset \mathbb{R}^m \). Let \(f : X \times Y \to \mathbb{R} \) be continuous and \(\Gamma : X \to Y \) be compact-valued and continuous. Then \(h : X \to \mathbb{R} \) is continuous and \(G : X \to Y \) is non-empty, compact valued, and u.h.c.
Theorem 3.8. Suppose \(\{f_n(x, y)\} \) and \(f(x, y) \) are concave in \(y \) that and \(\Gamma \) is convex and compact valued. Then if \(f_n \to f \) in the sup-norm (uniformly). Define

\[
\begin{align*}
 g_n(x) &= \operatorname{arg\ max}_{y \in \Gamma(x)} f_n(x, y) \\
 g(x) &= \operatorname{arg\ max}_{y \in \Gamma(x)} f(x, y)
\end{align*}
\]

then \(g_n(x) \to g(x) \) for all \(x \) (pointwise convergence); if \(X \) is compact then the convergence is uniform.
Uses of Corollary of CMThm

Monotonicity of v^*

Theorem 4.7. Assume that $F(\cdot, y)$ is increasing, that Γ is increasing, i.e.

$$\Gamma(x) \subset \Gamma(x')$$

for $x \leq x'$. Then, the unique fixed point v^* satisfying $v^* = Tv^*$ is increasing. If $F(\cdot, y)$ is strictly increasing, so is v^*.

Introduction to Dynamic Optimization

Nr. 10
Proof

By the corollary of the CMThm, it suffices to show Tf is increasing if f is increasing. Let $x \leq x'$:

$$Tf(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta f(y)\}$$

$$= F(x, y^*) + \beta f(y^*) \text{ for some } y^* \in \Gamma(x)$$

$$\leq F(x', y^*) + \beta f(y^*)$$

since $y^* \in \Gamma(x) \subset \Gamma(x')$

$$\leq \max_{y \in \Gamma(x')} \{F(x, y) + \beta f(y)\} = Tf(x')$$

If $F(\cdot, y)$ is strictly increasing

$$F(x, y^*) + \beta f(y^*) < F(x', y^*) + \beta f(y^*).$$
Concavity (or strict) concavity of v^*

Theorem 4.8. Assume that X is convex, Γ is concave, i.e. $y \in \Gamma (x)$, $y' \in \Gamma (x')$ implies that

$$y^\theta \equiv \theta y' + (1 - \theta) y \in \Gamma (\theta x' + (1 - \theta) x) \equiv \Gamma (x^\theta)$$

for any $x, x' \in X$ and $\theta \in (0, 1)$. Finally assume that F is concave in (x, y). Then, the fixed point v^* satisfying $v^* = Tv^*$ is concave in x. Moreover, if $F (\cdot, y)$ is strictly concave, so is v^*.
convergence of policy functions

• with concavity of F and convexity of $\Gamma \rightarrow \text{optimal policy correspondence } G(x)$ is actually a continuous function $g(x)$

• since $v_n \rightarrow v$ uniformly $\Rightarrow g_n \rightarrow g$
 (Theorem 4.8)

• we can use this to derive comparative statics
Differentiability

- can’t use same strategy as with monotonicity or concavity: space of differentiable functions is *not* closed
- many envelope theorems, imply differentiability of h

\[h(x) = \max_{y \in \Gamma(x)} f(x, y) \]

- always if formula: if $h(x)$ is differentiable and there exists a $y^* \in \text{int}(\Gamma(x))$ then

\[h'(x) = f_x(x, y) \]

...but is h differentiable?

continued...
• one approach (e.g. Demand Theory) relies on smoothness of Γ and f (twice differentiability) → use f.o.c. and implicit function theorem

• won’t work for us since $f(x, y) = F(x, y) + \beta V(y)$ → don’t know if f is once differentiable yet! → going in circles...
First a Lemma...

Lemma. Suppose $v(x)$ is concave and that there exists $w(x)$ such that $w(x) \leq v(x)$ and $v(x_0) = w(x_0)$ in some neighborhood D of x_0 and w is differentiable at x_0 ($w'(x_0)$ exists) then v is differentiable at x_0 and $v'(x_0) = w'(x_0)$.

Proof. Since v is concave it has at least one subgradient p at x_0:

$$w(x) - w(x_0) \leq v(x) - v(x_0) \leq p \cdot (x - x_0)$$

Thus a subgradient of v is also a subgradient of w. But w has a unique subgradient equal to $w'(x_0)$.
Benveniste and Sheinkman

Now a Theorem

Theorem. Suppose F is strictly concave and Γ is convex. If $x_0 \in \text{int} \,(X)$ and $g(x_0) \in \text{int} \,(\Gamma \,(x_0))$ then the fixed point of T, V, is differentiable at x and

$$ V' \,(x) = F_x \,(x, g(x)) $$

Proof. We know V is concave. Since $x_0 \in \text{int} \,(X)$ and $g(x_0) \in \text{int} \,(\Gamma \,(x_0))$ then $g(x_0) \in \text{int} \,(\Gamma \,(x))$ for $x \in D$ a neighborhood of x_0 then

$$ W \,(x) = F \,(x, g(x_0)) + \beta V \,(g(x_0)) $$

and then $W(x) \leq V(x)$ and $W(x_0) = V(x_0)$ and $W'(x_0) = F_x \,(x_0, g(x_0))$ so the result follows from the lemma.
Recursive Methods
Outline Today’s Lecture

- “Anything goes”: Boldrin Montrucchio
- Global Stability: Liapunov functions
- Linear Dynamics
- Local Stability: Linear Approximation of Euler Equations
treat $X = [0, 1] \in \mathbb{R}$ case for simplicity

- take any $g(x) : [0, 1] \rightarrow [0, 1]$ that is twice continuously differentiable on $[0, 1]$
 $\Rightarrow g'(x)$ and $g''(x)$ exists and are bounded

- define

$$W(x, y) = -\frac{1}{2}y^2 + yg(x) - \frac{L}{2}x^2$$

- Lemma: W is strictly concave for large enough L
Proof

\[W(x, y) = -\frac{1}{2}y^2 + yg(x) - \frac{L}{2}x^2 \]

\[
\begin{align*}
W_1 &= yg'(x) - Lx \\
W_2 &= -y + g(x)
\end{align*}
\]

\[
\begin{align*}
W_{11} &= yg''(x) - L \\
W_{22} &= -1 \\
W_{12} &= g'(x)
\end{align*}
\]

Thus \(W_{22} < 0; \, W_{11} < 0 \) is satisfied if \(L \geq \max_x |g''(x)| \)

\[
W_{11}W_{22} - W_{12}W_{21} = -yg''(x) + L - g'(x)^2 > 0
\]

\[\Rightarrow \quad L > g'(x)^2 + yg''(x) \]

Then \(L > \left[\max_x |g'(x)| \right]^2 + \max_x |g''(x)| \) will do.
Decomposing \(W \) (in a concave way)

- define \(V (x) = W (x, g(x)) \) and \(F \) so that
 \[
 W (x, y) = F (x, y) + \beta V (y)
 \]
 that is \(F (x, y) = W (x, y) - \beta V (y) \).

- Lemma: \(V \) is strictly concave

 Proof: immediate since \(W \) is concave and \(X \) is convex. Computing the second derivative is useful anyway:
 \[
 V'' (x) = g'' (x) g (x) + g' (x)^2 - L
 \]
 since \(g \in [0, 1] \) then clearly our bound on \(L \) implies \(V'' (x) < 0 \).
Concavity of F

- Lemma: F is concave for $\beta \in [0, \tilde{\beta}]$ for some $\tilde{\beta} > 0$

\[
F_{11}(x, y) = W_{11}(x, y) = yg''(x) - L
\]
\[
F_{12}(x, y) = W_{12}(x, y) = -1
\]
\[
F_{22}(x, y) = W_{22} - \beta V_{22} = -1 - \beta \left[g''(x)g(x) + g'(x)^2 - L\right]
\]
\[
F_{11}F_{22} - F_{12}^2 > 0
\]
\[
\Rightarrow (yg''(x) - L) \left(-1 - \beta \left[g''(x)g(x) + g'(x)^2 - L\right]\right) - g'(x)^2 > 0
\]
... concavity of F

- Let

$$
\eta_1(\beta) = \min_{x,y} (-F_{22}) \\
\eta_2(\beta) = \min_{x,y} [F_{11}F_{22} - F_{12}^2] \\
\eta(\beta) = \min \{ H_1(\beta), H_2(\beta) \} \geq 0
$$

- for $\beta = 0 \eta(\beta) > 0$. η is continuous (Theorem of the Maximum) \Rightarrow exists $\tilde{\beta} > 0$ such that $H(\beta) \geq 0$ for all $\beta \in [0, \tilde{\beta}]$.
Monotonicity

- Use

\[W(x, y) = -\frac{1}{2} y^2 + yg(x) - \frac{L_1}{2} x^2 + L_2 x \]

- \(L_2 \) does not affect second derivatives

- claim: \(F \) is monotone for large enough \(L_2 \)