1. (30 points) A latent variable y^* is related to a set of covariates X by

$$y^* = X\beta + \varepsilon,$$

where ε is independently, normally distributed with mean 0 and variance σ^2. Recall that the probability density function (p.d.f.) of ε in this case is

$$f(\varepsilon) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} \varepsilon^2\right).$$

In all of the cases below, assume that you have access to a random sample of N observations, $\{y_i, X_i\}_{i=1}^N$.

(a) Say that

$$y_i = \begin{cases} 1 & \text{if } y_i^* > 0 \\ 0 & \text{if } y_i^* \leq 0 \end{cases}.$$

Write down the log likelihood function for the sample. Determine whether β and σ^2 are separately identified.

(b) Say that

$$y_i = \begin{cases} y_i^* & \text{if } y_i^* > 0 \\ 0 & \text{if } y_i^* \leq 0 \end{cases}.$$

Write down the log likelihood function for the sample in this case. Are β and σ^2 separately identified in this case? Why?

(c) Say that

$$y_i = y_i^*.$$

Define the maximum likelihood estimator of β for this case.
2. (30 points) Consider the panel data regression model
\[y_{it} = \beta x_{it} + \varepsilon_{it} \]
where
\[\varepsilon_{it} = \alpha_i m_i + u_{it}, \]
and where \(u_{it} \) is i.i.d. with mean 0 and variance \(\sigma^2_u \), \(\alpha_1 = 1 \). You have access to a random sample of observations from the population for \(N \) individuals and 2 time periods, \(\{y_{it}, x_{it}\}_{i=1,...,N; t=1,2} \). Assume that \(x_{it} \) is a scalar for simplicity, and that all variables are measured as deviations from their means.

(a) Assume that \(m_i \) is i.i.d. with mean 0 and variance \(\sigma^2_m \) for all \(i \). Derive consistent estimators for \(\beta, \sigma^2_u, \sigma^2_m, \) and \(\alpha_2 \), if they exist.

(b) Now assume that the distribution of \(m_i \) conditional on \(x_{i1}, x_{i2} \) is unknown. In particular, it is not (necessarily) the case that \(E(m_i|x_{i1}, x_{i2}) = 0 \).

i. If you know that \(\alpha_2 = 1 \), explain how you would obtain a consistent estimator of \(\beta \), assuming that \(x_{i2} \neq x_{i1} \) for all \(i \).

ii. If \(\alpha_2 \) is unknown, explain whether you could obtain a consistent estimator of \(\beta \).

3. (20 points) A population of unemployed job searchers has completed spell lengths given by a negative exponential distribution, that is, the p.d.f. and c.d.f. are
\[f(t) = \alpha \exp(-\alpha t), \quad t > 0, \quad \alpha > 0. \]
\[F(t) = 1 - \exp(-\alpha t). \]
A random sample of \(N \) individuals are drawn from this population. For unemployment spells that lasted less than 3 months, the exact duration of the spell was not recorded. For those lasting more than 3 months, \(t \) is measured exactly.

(a) Write the log likelihood for this sample as a function of \(\alpha \). Derive the maximum likelihood estimator of \(\alpha \).

(b) If you exclude the censored observations (i.e., those for which \(t < 3 \)), the sample mean of unemployment spells is 5. Using this information, is it possible to provide a bound on the maximum likelihood estimate you would obtain from the maximization of the log likelihood you derived above? If so, what is it?
4. (20 points) A cross-sectional population regression model is given by

\[y_i = \beta x_i + \varepsilon_i, \]

where \(y_i \) and \(x_i \) have mean 0 in the population, and \(\varepsilon_i \) is independently and identically distributed (i.i.d.) with mean 0 and variance \(\sigma^2_{\varepsilon} \). You have access to a random sample of observations on \(\{y_i, x_i^*, z_i\}_{i=1}^N \). The variable \(x_i^* \) is a “noisy” measure of \(x_i \), that is,

\[x_i^* = x_i + u_i, \]

where \(u_i \) is i.i.d. with mean 0 and variance \(\sigma^2_{u} \). In the population, the following moment properties hold:

\[
\begin{align*}
E(zx) & \neq 0 \\
E(zu) & = 0 \\
E(z\varepsilon) & = 0.
\end{align*}
\]

Determine whether it is possible to obtain a consistent estimator of \(\beta \) given access to the sample information. If not, why not? If so, what is it?