CSCI-UA.9480: Introduction to Computer Security

Spring 2019

Instructor: Nadim Kobeissi  Office Hours: TBA, TBA – TBA.
Email: nk76@nyu.edu  Office Number: Room TBA.

Course Information:

• Course number and section: CSCI-UA9480.

• Course title: Introduction to Computer Security.

• Course description: Technology increasingly permeates every aspect of our lives, including communication, finance and health. The security of the computer systems that enable these services has become a critical issue. This course will cover basic principles of computer security and security engineering. It will introduce fundamental computer security concepts, principles, and techniques. It will also cover notions of real-world cryptography, the mathematical building blocks that underlie any digital security construction. This course will focus on security from an attacker’s perspective (threat modeling) and the defender’s perspective (building and deploying secure systems). Specific topics will include operating system security, network security, web security, applied cryptography, security economics and security psychology. Course projects will focus both on writing secure code and exploiting insecure code.

• Prerequisites: CSCI-UA.0201 (Computer Systems Organization) and experience with computer systems level programming languages (e.g. C, and C++ programming). Recommended prerequisite courses include CSCI-UA.0202 (Operating Systems), and CSCI-UA.0480-009 (Computer Networks). Experience with web development will also be helpful.

• Class meeting days and times: Mondays and Wednesdays, 3:00pm – 4:30pm. Room TBA.

• Course website.

Course Overview and Goals:

Upon completion of this course, students will be able to:

• Understand the basic principles of computer security.

• Understand the basic principles of the cryptographic constructions underlying modern computer security.

• Acquire knowledge in important security topics such as operating system security, network security, web security, security economics and security psychology.

• Write secure code and exploit insecure code from an attacker’s perspective (threat modeling) and the defender’s perspective (building and deploying secure systems).
Course Requirements:

- **Class participation**: You are expected to attend all classes. Missing a class can entail missing on important material. Discourse is encouraged during classes, but not mandatory.

- **Assigned readings**: Every lecture will be accompanied by outside readings that expand on what is discussed in class or present the same material in a different way. Neither the readings nor the lectures are a replacement for each other; deeply understanding the material will likely require attendance as well as reading. It is possible to read before or after class, depending on your learning style.

- **Problem sets**: Three problem sets will be assigned as homework. Problem sets must be submitted online before the start of class on the day that they are marked as due.

- **Practical assignments**: Two practical assignments will be organized during the course.

- **Exams**: A midterm exam and a final exam will be organized as part of this course.

Grading of Assignments:
The grade for this course will be determined according to the following formula:
Class participation (10%), practical assignments (20%), problem sets (20%), midterm exam (25%) and final exam (25%).

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>94</td>
<td>Outstanding</td>
</tr>
<tr>
<td>A-</td>
<td>90</td>
<td>Excellent</td>
</tr>
<tr>
<td>B+</td>
<td>87</td>
<td>Very Good</td>
</tr>
<tr>
<td>B</td>
<td>84</td>
<td>Good</td>
</tr>
<tr>
<td>B-</td>
<td>80</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>C+</td>
<td>77</td>
<td>Above Average</td>
</tr>
<tr>
<td>C</td>
<td>74</td>
<td>Average</td>
</tr>
<tr>
<td>C-</td>
<td>70</td>
<td>Below Average</td>
</tr>
<tr>
<td>D+</td>
<td>67</td>
<td>Unsatisfactory</td>
</tr>
<tr>
<td>D</td>
<td>65</td>
<td>Low Pass</td>
</tr>
<tr>
<td>F</td>
<td>64</td>
<td>Fail</td>
</tr>
</tbody>
</table>
Course Schedule:

- Sep. 3: Introduction and Threat Modeling
  - *Security Engineering* Chapter 1
  - *Serious Cryptography* Chapter 1
  - *Serious Cryptography* an Introduction to Approachable Threat Modeling

**Part 1: Cryptography** ............................................... 7 sessions

- 1.1: One-Way Functions and Hash Functions
  - *Security Engineering* Chapter 3
  - *Serious Cryptography* Chapter 6
- 1.2: Symmetric Key Encryption
  - *Serious Cryptography* Chapters 3, 4, 5
- 1.3: Public Key Cryptography
  - *Serious Cryptography* Chapters 9, 11, 12
- 1.4: Transport Layer Security
  - *Serious Cryptography* Chapter 13
  - *Let’s Encrypt: How It Works*
  - *The Illustrated TLS Connection*
- 1.5: Usable Security
  - *Security Engineering* Chapter 2
  - *15 Reasons not to Start Using PGP*
- 1.6: Secure Messaging
  - *State of Knowledge: Secure Messaging*
  - *Automated Verification for Secure Messaging Protocols and their Implementations: A Symbolic and Computational Approach*
- 1.7: Cryptocurrencies, Blockchains, Smart Contracts
  - Problem Set 1 Due
  - *Bitcoin and Cryptocurrency Technologies* Chapters 1, 2
  - *The Idea of Smart Contracts*

---

*Session will include invited guest Dr. Jean-Philippe Aumasson, cryptographer and designer of the BLAKE2 hash function.*

*RSA will be briefly discussed in class.*

*The Illustrated TLS Connection* is an online interactive learning tool.
Part 2: Network Security ............................... 7 sessions
  2.1: Networking Basics
      Security Engineering Chapter 21
      An Introduction to Computer Networks Chapters 1, 22
  2.2: IP, TCP and DNS
      An Introduction to Computer Networks Chapter 7
      How DNSSEC Works
  2.3: Denial of Service
      Security Engineering Chapter 21.2
      Understanding the Mirai Botnet
      How Netflix DDoS'd Itself to Help Protect the Entire Internet
  2.4: Designing Secure Network Systems
      Capsule: A Protocol for Secure Collaborative Document Editing
      Noise Explorer<sup>a</sup>
  2.5: New Secure Protocols: WireGuard<sup>b</sup>
      WireGuard: Next Generation Kernel Network Tunnel
      A Cryptographic Analysis of the WireGuard Protocol
  Oct. 17: Practical Assignment 1 Review
  Oct. 22: Midterm Exam
<sup>a</sup>Noise Explorer is an online interactive learning tool.
<sup>b</sup>Session tentatively includes an invited guest.

Part 3: Software Security ............................... 4 sessions
  3.1: Understanding and Preventing Vulnerabilities
      Software Security Knowledge Area
  3.2: Access Control and Information Flow
      Security Engineering Chapters 4.1, 4.2
      Security Engineering Chapters 8.2, 8.3
  3.3: Systems Security and Isolation
      Security Engineering Chapter 4.3
      Security in Ordinary Operating Systems
      iOS Security Guide
      Apple T2 Security Chip Overview
      Android Security: 2017 Year in Review
  3.4: Control Flow Hijacking
      Problem Set 2 Due
      Security Engineering Chapter 4.4
      Low-level Software Security: Attacks and Defenses
Part 4: Web Security .................................................. 6 sessions

  4.1: Browser Security Model
       Browser Security Handbook, part 1
       Browser Security Handbook, part 2
  4.2: Web Application Security
       Introduction to Cross-Site Scripting
       Password Storage Cheat Sheet
       Why Don’t We Follow Password Security Best Practices?
  4.3: Hybrid Runtimes: Electron and Node.js
  4.4: Web Privacy
       Tools from the EFF’s Tech Team
       Europe’s New Privacy Law Will Change the Web, and More
  4.5: Spam and Abuse
       Click Trajectories: End-to-End Analysis of the Spam Value Chain

Part 5: Security and Society ......................................... 4 sessions

  5.1: Online Crime
       Problem Set 3 Due
       Framing Dependencies Introduced by Underground Commoditization
  5.2: Economics, Ethics and Law
       Security Engineering Chapter 7.5
       Vulnerability Reporting FAQ
  5.3: Censorship and Mass Surveillance
       Security Engineering Chapter 24.3
       The 10 Biggest Revelations from Edward Snowden’s Leaks
  5.4: Final Exam

Required Textbooks and Materials:


- Students will require their own personal computer for various parts of this course. Windows, Linux and Mac computers are all suitable.

Online Readings:

All of the online readings listed below are available for free on the course website.


- SecuShare, 15 Reasons not to Start Using PGP.

Introduction to Computer Security


- Frank Piessens, Software *Security Knowledge Area*, University of Bristol Cyber Security Group, 2018.


Introduction to Computer Security

- Coders’ Rights Project, *Vulnerability Reporting FAQ*, Electronic Frontier Foundation.

Resources:
- Access your course materials: [NYU Classes](#).
- Databases, journal articles and more: [Bobst Library](#).
- Assistance with strengthening your writing: [NYU Writing Center](#).
- Obtain 24/7 technology assistance: [IT Help Desk](#).

Attendance and Tardiness:

- Study abroad at Global Academic Centers is an academically intensive and immersive experience in which students from a wide range of backgrounds exchange ideas in discussion-based seminars. Learning in such an environment depends on the active participation of all students. And since classes typically meet once or twice a week, even a single absence can cause a student to miss a significant portion of a course. To ensure the integrity of this academic experience, class attendance at the centers is mandatory, and unexcused absences will be penalized with a two percent deduction from the student’s final course grade for every week’s worth of classes missed. Students are responsible for making up any work missed due to absence. Repeated absences in a course may result in harsher penalties including failure.

- Unexcused absences affect students’ grades: unexcused absences will be penalized with a 2% deduction from the students’ final course grade.

- Absences are excused only for illness, religious observance, and emergencies.

- **Illness:** For a single absence, students may be required to provide a doctor’s note, at the discretion of the Associate Director of Academics. In the case of two consecutive absences, students must provide a doctor’s note. Exams, quizzes, and presentations will not be made up without a doctor’s note.
• **Religious observance:** Students observing a religious holiday during regularly scheduled class time are entitled to miss class without any penalty to their grade. This is for the holiday only and does not include the days of travel that may come before and/or after the holiday. Students must notify their instructor and the Academic Office in writing via email one week in advance before being absent for this purpose. If exams, quizzes, and presentations are scheduled on a holiday a student will observe, the Associate Director, in coordination with the instructor, will reschedule them.

• **Contact your professor:** if you are unable to attend class, you are required to email your professors directly to notify them.

• **Late assignment:** Late submission or work will be accepted only with justifiable reasons of health or family emergency.

**Academic Honesty and Plagiarism:**

At NYU, a commitment to excellence, fairness, honesty, and respect within and outside the classroom is essential to maintaining the integrity of our community. Plagiarism is defined as presenting others’ work without adequate acknowledgement of its source, as though it were one’s own. Plagiarism is a form of fraud. We all stand on the shoulders of others, and we must give credit to the creators of the works that we incorporate into products that we call our own. Some examples of plagiarism:

- A sequence of words incorporated without quotation marks.
- An unacknowledged passage paraphrased from another’s work.
- The use of ideas, sound recordings, computer data or images created by others as though it were one’s own.
- Submitting evaluations of group members’ work for an assigned group project which misrepresent the work that was performed by another group member.
- Altering or forging academic documents, including but not limited to admissions materials, academic records, grade reports, add/drop forms, course registration forms, etc.

For further information, students are encouraged to check NYU’s Academic Integrity Policy.

**Disability Disclosure Statement:**

Academic accommodations are available for students with disabilities. Please contact the Moses Center for Students with Disabilities (212-998-4980 or mosecsd@nyu.edu) for further information. Students who are requesting academic accommodations are advised to reach out to the Moses Center as early as possible in the semester for assistance.

**About Your Instructor:**

My name is Nadim and it is my distinct privilege to be your instructor for this course. I am a researcher with a focus on applied cryptography, protocol analysis and formal verification. In designing and deploying real-world cryptographic systems in the public and private sector, I have always attempted to combine both theoretical and applied approaches to cryptography. I have done research at the Institut National de Recherche en Informatique et Automatique (INRIA) in Paris (accredited by École Normale Superieure) and have published peer-reviewed research focusing on applied cryptography and automated protocol verification. I have also maintained several open source projects including the well-known Cryptocat secure messaging software and have been involved in digital privacy issues.

I believe that computer security is an exciting field that combines computer science, mathematics, global politics, but also a large dose of the human elements of intrigue, curiosity and thinking outside the box. I hope that by the end of this course, you too will develop an interest in what the world of computer security has to offer.