Child and Adolescent Brain Development: Applications from Neuroscience to Practice

Class code: CAMS-UA 9141 – 001

Instructor Details:
Dr Suraj Samtani
ss9224@nyu.edu
Consultations by appointment (Monday 12-12.30pm).
Please allow at least 24 hours for your instructor to respond to your emails.

Class Details
Spring 2018
Child and Adolescent Brain Development: Applications from Neuroscience to Practice

Monday 9:00am – 12:00pm
January 29 to May 14
Room 301
NYU Sydney Academic Centre

Prerequisites: None

Class Description: The course is broken up into three sections;

Section I: Foundations: Knowledge versus the Unknown
In this section, students will be involved in lectures and discussions aimed at developing their knowledge about the functional anatomy of the human brain and the current appreciation that neuroscientists have developed about how the human brain has developed in utero, from infancy through early childhood and into adolescent development. The course focuses on the models that have been proposed in the past for explaining the relationship to brain areas and human behaviour (phrenology and specific localization of cognitive functioning) and contrast those models with the current base of knowledge. Awareness that there is more about brain development that has not been learned and remains unknown will be discussed.

Section II: Observation: Nature versus Nurture
In this section, students will be involved in lectures and discussions aimed at developing their knowledge about the functions that are essential during the development of infancy and early childhood. Students will develop their appreciation for observational methods of examining the behaviour of very young children and will review empirical studies of children’s intellectual development, in the perception and orientation toward human faces, in language
development, and in motor development. The studies that will be examined will help students to consider the role of genetics and the impact that environmental influences have on the brain development of children.

Section III: Assessment: Normalcy versus Disorder
In this section, students will be involved in lectures and discussions aimed at developing their knowledge about the neurocognitive functions that are essential during middle and late childhood. Students will be introduced to the method of assessment used by neuropsychologists. Students will develop their appreciation for assessment methods in which the behaviours of children can be compared to their peer group on standardised instruments. We will review how assessment can be used to differentiate normal or typical development from disorders in cognitive functioning such as in learning to read, in attentional disorders, in anxiety disorders, and in those errors children make in remembering factual and autobiographical information.

Desired Outcomes
Students will learn key aspects of:
1. The anatomy of the human brain;
2. The development of the human brain across the lifespan; and
3. How scientists observe, assess and intervene in the development of neurocognitive processes in childhood and adolescence.

Students will develop:
1. An appreciation of the complexity of the human brain, the limits and advantages of our current knowledge; and
2. An awareness that a neurocognitive perspective has explained a considerable array of human behaviour, including aspects of emotional functioning and personality.

Students will be able to:
1. Generate ideas about how development of the brain parallels other developmental changes seen through childhood and adolescence; and
2. Critically evaluate the common, albeit unscientific assumptions, that are made about the development of children’s brain functioning and provide alternate theoretically and empirically supported explanations about child and adolescent behaviour based on neurocognitive models.

Assessment Components

Exam 1 (15%): Mon 5 Mar (Week 6), 1 hour 15 minutes
Students will answer multiple choice and short answer questions about neuroanatomy, brain development, and past and current models of the connection between brain functions and human behaviour.

Exam 2 (20%): Mon 9 Apr (Week 11), 1 hour 15 minutes
Students will answer multiple choice and short answer essay questions about infant development, prematurity, intelligence, visual perception, language development, and motor functioning.

Exam 3 (20%): Mon 14 May (Exam Week), 9:00 – 11:00am
Students will answer multiple choice questions and short answer essay questions about the neuropsychological evaluation, reading, dyslexia, attentional disorder, memory and learning disorders and brain based connections for emotional dysfunction.

Class Participation (10%) – ongoing throughout semester
Students will be given a grade for participation based upon attention during class, responsiveness and thoughts about comments made by other students, and a demonstration that they have read the material.

Research Topic Paper (35%): Due by 9am, Mon 7 May (Week 15) – 4 pages
A half page write up of your topic is due in Week 12
Students will write a research paper on a topic using outside APA approved journal references (minimum of 5 references required). This write-up does not need to be in APA format, but must include at least three references from outside of class.

The paper should serve to briefly define the relevant terms, briefly review the literature on brain development (using articles outside of those assigned for class), and highlight one specific area that you were interested in exploring further related to either development or intervention.

Failure to submit or fulfill any required course component will result in failure of the class.

For this course your total numerical score, calculated from the components listed above, is converted to a letter grade without rounding.

Extra Credit: Site policy does not allow grading of work outside of the assignments included in the syllabus. The final grade will only be calculated from the assessment components listed here and no other work, whether additional or substituted, is permitted.

Assessment Expectations

Grade A: Excellent performance showing a thorough knowledge and understanding of the topics of the course; all work includes clear, logical explanations, insight, and original thought and reasoning.

Grade B: Good performance with general knowledge and understanding of the topics; all work includes general analysis and coherent explanations showing some independent reasoning, reading and research.

Grade C: Satisfactory performance with some broad explanation and reasoning; the work will typically demonstrate an understanding of the course on a basic level.
Grade D: Passable performance showing a general and superficial understanding of the course’s topics; work lacks satisfactory insight, analysis or reasoned explanations.

Grade F: Unsatisfactory performance in all assessed criteria. Work is unfinished or unsubmitted.

Grade Conversions
For this course your total numerical score, calculated from the components listed above, correspond to the following letter grades:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Numerical Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 to 100</td>
</tr>
<tr>
<td>A-</td>
<td>86 to < 90</td>
</tr>
<tr>
<td>B+</td>
<td>82 to < 86</td>
</tr>
<tr>
<td>B</td>
<td>72 to < 82</td>
</tr>
<tr>
<td>B-</td>
<td>68 to <72</td>
</tr>
<tr>
<td>C+</td>
<td>64 to <68</td>
</tr>
<tr>
<td>C</td>
<td>54 to <64</td>
</tr>
<tr>
<td>C-</td>
<td>50 to <54</td>
</tr>
<tr>
<td>D+</td>
<td>45 to <50</td>
</tr>
<tr>
<td>D</td>
<td>40 to <45</td>
</tr>
<tr>
<td>F</td>
<td>0 to <40</td>
</tr>
</tbody>
</table>

Submission of Work
Assignments (excluding in-class presentations and exams) must be submitted electronically via NYU Classes. It is the student’s responsibility to confirm that the work has been successfully uploaded. In the unlikely event that a submission to Classes fails, students must immediately submit the work to the Academic Programs Coordinator via email before the original submission deadline accompanied by an explanation of the issue. All in-class presentations and exams must be completed during the scheduled class time. An assessment component is considered completed when the student has met all the terms for that assessment component as outlined by the instructor.

An assessment component completed after the deadline without an agreed extension receives a penalty of 2 points on the 100-point scale (for the assignment) for each day the work is late. Work completed beyond five weekdays after the due date without an agreed extension receives a mark of zero, and the student is not entitled to feedback for that piece of work. Because failure to submit or fulfil any required assessment component will result in failure of the course, it is crucial for students to complete every assignment even when it will receive a mark of zero.

Plagiarism Policy
The academic standards of New York University apply to all coursework at NYU Sydney. NYU Sydney policies are in accordance with New York University’s plagiarism policy. The
presentation of another person’s words, ideas, judgment, images or data as though they were your own, whether intentionally or unintentionally, constitutes an act of plagiarism.

It is a serious academic offense to use the work of others (written, printed or in any other form) without acknowledgement. Cases of plagiarism are not dealt with by your instructor. They are referred to the Director, who will determine the appropriate penalty (up to and including failure in the course as a whole) taking into account the codes of conduct and academic standards for NYU’s various schools and colleges.

Attendance Policy

Study abroad at Global Academic Centres is an academically intensive and immersive experience, in which students from a wide range of backgrounds exchange ideas in discussion-based seminars. Learning in such an environment depends on the active participation of all students. And since classes typically meet once or twice a week, even a single absence can cause a student to miss a significant portion of a course. To ensure the integrity of this academic experience, class attendance at the centres is mandatory, and unexcused absences will affect students' semester grades. The class roster will be marked at the beginning of class and anyone who arrives after this time will be considered absent. Students are responsible for making up any work missed due to absence.

For courses that meet once a week, one unexcused absence will be penalised by a two percent deduction from the student’s final course grade. For courses that meet two or more times a week, the same penalty will apply to two unexcused absences. Repeated absences in a course may result in failure.

Faculty cannot excuse an absence. Requests for absences to be excused must be directed to the Academic Programs Coordinator. Students must provide appropriate documentation for their absence. In the case of illness, students must contact the Academic Programs Coordinator on the day of absence. They must provide medical documentation to Academic Programs Coordinator within three days of the absence in order to be medically excused. The note must include a medical judgement indicating that the student was unfit to attend class/work on the specific day or dates of the absence. Faculty will be informed of excused absences by the Academic Programs staff.

Classroom Expectations

This is a seminar subject and requires the active participation of all students. It also requires engaged discussion, including listening to and respecting other points of view. Your behaviour in class should respect your classmates’ desire to learn. It is important for you to focus your full attention on the class, for the entire class period.

- Arrive to class on time.
- Once you are in class, you are expected to stay until class ends. Leaving to make or take phone calls, to meet with classmates, or to go to an interview, is not acceptable behaviour.
• Phones, digital music players, and any other communications or sound devices are not to be used during class. That means no phone calls, no texting, no social media, no email, and no internet browsing at any time during class.
• Laptop computers and tablets are not to be used during class except in rare instances for specific class-related activity expressly approved by your instructor.
• The only material you should be reading in class is material assigned for that class. Reading anything else, such as newspapers or magazines, or doing work from another class, is not acceptable.
• Class may not be recorded in any fashion – audio, video, or otherwise – without permission in writing from the instructor.

Diversity, Inclusion and Equity
NYU is committed to building a culture that respects and embraces diversity, inclusion, and equity, believing that these values – in all their facets – are, as President Andrew Hamilton has said, “...not only important to cherish for their own sake, but because they are also vital for advancing knowledge, sparking innovation, and creating sustainable communities.” At NYU Sydney we are committed to creating a learning environment that:
• fosters intellectual inquiry, research, and artistic practices that respectfully and rigorously take account of a wide range of opinions, perspectives, and experiences; and
• promotes an inclusive community in which diversity is valued and every member feels they have a rightful place, is welcome and respected, and is supported in their endeavours.

Religious Observance
Students observing a religious holiday during regularly scheduled class time are entitled to miss class without any penalty to their grade. This is for the holiday only and does not include the days of travel that may come before and/or after the holiday. Students must notify their professor and the Academic Programs Coordinator in writing via email one week in advance before being absent for this purpose.

Provisions to students with Disabilities
Students with disabilities who believe that they may need accommodations in a class are encouraged to contact the Moses Centre for Students with Disabilities at (212) 998-4980 as soon as possible to better ensure that such accommodations are implemented in a timely fashion. For more information, see Study Away and Disability.

Required Texts
It is a course expectation that you have done the required reading and have prepared sufficiently to discuss them in class.

Other selected readings are posted on NYU Classes.

SECTION I: FOUNDATIONS: KNOWLEDGE VERSES THE UNKNOWN

Week 1 Introduction and Cognitive Models: The History

Monday 29 January

Introduction to the Course Dialectics: Knowledge versus the Unknown, Nature versus Nurture, Normalcy versus Disorder, and Complacency versus Action. These are chosen to help students develop a mindset about important questions in the field such that they develop a broader base of information to manage the tensions between the two poles of each dialectic, but do not conclude that these issues have been definitively resolved.

Cognitive Models: The History
• Explanation of past models of brain functioning (phrenology and specific localization of cognitive functioning).
• Description of Functional Brain Areas or Units and Computational Models of Brain Functioning

Required Reading:

Recommended Reading:

Week 2

Monday 5 February

Functional Neuroanatomy: From Autopsy to Neuroimaging
• Review of directional terms: dorsal, ventral, caudal, rostral, posterior, anterior, sagittal, coronal and horizontal slices.
• Review of subcortical structures and functional properties of those areas.
• Review of cortical structures and preview of functional properties attributed to those areas including: occipital, parietal, temporal and frontal lobes as well as more detailed examination of prefrontal cortex.
• Review of the ventricular system and the vascular system.
• Review of the use of autopsy, CT scans, MRI and fMRI technology, and newer technologies like Diffusion MRI.
- Identification of Gray and White Matter

Required Reading:

The Developing Brain I
- Review of cell migration, pruning, and arborization in animal and human models.
- Review the growth and development of the grey and white matter during early childhood and the functional implications of those brain changes.

Required Reading:

Week 3

Monday 12 February

The Developing Brain II
- Review of cell migration, pruning, and arborization in humans during late childhood, adolescence and adulthood.
- The growth and development of the grey and white matter during later childhood and adolescence and the functional implications of those brain changes.
- Discuss how these research findings can be understood in the context of those behaviours that children and teens are expected to engage in (i.e., a developmental perspective).
- Discuss concept of plasticity and how it applies to childhood, adolescence and adulthood.
- Examine cases of traumatic brain injury in these different stages to highlight differences in plasticity of brain functioning.

Required Reading:

Recommended Reading:

Week 4

Monday 19 February

Sensitive/Critical Periods and Neuroplasticity
- Review concept of sensitive and critical periods for the development of specific neurocognitive functions.
• Examine clinical cases of language development and fine motor functioning

Required Reading:

Recommended Reading:

Week 5
Monday 26 February

Prematurity

• Review prenatal Development including definitions of low birth weight ("LBW") and Preterm Birth
• Discuss prevalence and introduce interventions for preterm and low birth weight infants
• Students will learn about causes and effects on the brain and specific outcomes neuropsychological Outcomes

Required Reading:

Prenatal Development Infancy and Early Childhood Intellect: Genes and the Role of the Environment

• Developmental Milestones of Infants and Early Children

Required Reading:
• Center for Disease Control (2012). “Developmental Milestones Checklist.”

SECTION II: OBSERVATION, NATURE VERSES NURTURE
Week 6
Monday 5 March

Assignment: EXAM 1 (15%)

Intelligence

• Review the History of Intelligence Tests for Children
• Students will learn types of Intelligence and Models of Multiple Intelligences
• Discuss the genetic and environmental Impacts on Intelligence as well as the applications of the IQ Test
• Students will review and re-learn the occipital, parietal and temporal lobe and important subcortical areas

Required Reading:

SPRING BREAK: 12 – 16 March (Week 7)

Week 8
Monday 19 March

Guest Lecturer: Amy Datyner (to be confirmed; Facial recognition in infants)

Facial Perception and Object Perception
• Students will observe and learn the orientation of Babies to Human Faces
• Review of Empirical Studies of Facial Perception and Implications of Brain Areas Involved
• Discuss Ideas of Attachment and Autism

Required Reading:

Reminder: Please read the book Meaningful Differences for Session 8.

Week 9
Monday 26 March

Language Development: The Role of the Environment
• Re-Learning the Temporal, Parietal and Frontal Cortical Areas
• A system for understanding different language based skills and functions
• Small Group Discussion of Reading: Meaningful Differences

Required Reading:

Week 10
Friday 6 April (Make-up class for Easter Monday)

Motor Development
- Re-Learning the Frontal Lobe, Subcortical Areas and the Cerebellum
- Learning system for understanding different motor based skills and functions

Required Reading:

SECTION III: ASSESSMENT: NORMALCY VERSES DISORDER
Week 11
Monday 9 April

Assignment: EXAM 2 (20%)

The Neuropsychological Evaluation
- How to think about Assessment of Cognitive Functions and Guidelines for Cognitive Development According to Child Age
- Introduction to the Psychoeducational Evaluation and the Neuropsychological Evaluation The Neuropsychological Method and the Application to Children
- Case Examples of Differential Diagnosis

Required Reading:

Reminder: Please read the book *Proust and the squid: The story and science of the reading brain* for next week’s session

Week 12
Monday 16 April

Guest Lecture: Dr Eva Battaglini (to be confirmed; PTSD and neuroimaging)
The Reading System

- How the Brain Learns to Read
- Phonological Awareness and Reading Fluency: Automaticity and problems with Retrieval

Required Reading:

Developmental Dyslexia and Learning Disorders

- Developmental Dyslexia Common Myths, Gender Differences and Cultural Differences, Dyslexia as a Brain Based Language Based Learning Disorder, Remediation of Dyslexia, Other Language Based Learning Disorders Typically Seen in Childhood
- Review of Cases—The Neuropsychological Perspective

Required Reading:

Recommended Reading:

Half-page write up of your Paper Topic due.

Week 13

Monday 23 April

Attentional Disorders

- Attentional and Executive Functions Important in Childhood
- The four neurocircuits involved in Attention
- Four Models of ADHD
- Changes in the Behavioral Phenotype Across the Lifespan

Required Reading:

Week 14

Monday 30 April

Problems with Memory
• Different Types of Memory: Declarative, Procedural, Episodic.
• Memory Functions Important in Childhood How Memories are Made and Stored- The Role of the Hippocampus
• Unusual Experiences in Memory Function-Retrieval Problems, Problems with Source Memory, False Memories, Trauma, Suggestibility

Required Reading:

Week 15

Monday 7 May

Emotions: Fear and Anxiety Disorders
• The Processing of Emotional Experiences
• Some Models of Emotional Experience-The Somatic Marker Hypothesis
• How Emotional Experiences Occur and are Understood-The Role of the Amygdala

Required Reading:

The Future: Neuroimaging and Experimental Evidence & Wrap Up

Assignment: Research Paper Due (35%)

EXAM 3 (20%): Exam Week, Monday 14 May, 9:00 – 11:00am

Your Instructor

Dr Suraj Samtani (Ph.D., University of New South Wales) is a Clinical Psychologist. He has completed a Masters and PhD in Clinical Psychology at the University of New South Wales (UNSW). His primary research interests are rumination and worry, and developing better assessments and treatments for these cognitive processes across disorders.

He has taught various subjects at UNSW including neuropsychological assessment and psychopathology, social and developmental psychology, and introduction to psychology. He has worked as a clinician with acute psychosis, traumatic brain injury and personality disorder populations, conducting neuropsychological
assessments and delivering treatment. His clinical experience also includes working with children and adolescents with learning difficulties, anxiety, depression, and autism spectrum disorder.