Problem set #1
Due: Feb. 4, 2016

1. **Nonuniqueness of the Lagrangian**: The Lagrangian of a system of \(N\) particles in Cartesian coordinates is

\[
L(r, \dot{r}) = \frac{1}{2} \sum_{i=1}^{N} m_i \dot{r}_i^2 - U(r_1, ..., r_N)
\]

Let \(F(r_1, ..., r_N, t)\) be any differentiable function of the coordinates and of time. Show that the Lagrangian

\[
L'(r, \dot{r}, t) = L(r, \dot{r}) + \frac{dF(r_1, ..., r_N, t)}{dt}
\]

gives the same equations of motion as \(L(r, \dot{r})\).

2. It has been suggested that when a system is subject to a shearing force, its Hamiltonian should be modified to read

\[
H(r, p) = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + U(r_1, ..., r_N) + \sum_{i=1}^{N} \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} r_{i,\alpha} B_{\alpha\beta} p_{i,\beta}
\]

where \(\alpha\) and \(\beta\) index the three spatial components of the vectors \(r_i\) and \(p_i\) such that \(r_{i,1} = x_i, r_{i,2} = y_i, r_{i,3} = z_i\) with analogous identifications for \(p_{i,\beta}\). \(B_{\alpha\beta}\) is a constant matrix.

a. Derive Hamilton’s equations of motion for this Hamiltonian.

b. Suppose the elements of the matrix \(B_{\alpha\beta}\) are \(B_{32} = \gamma\) and \(B_{\alpha\beta} = 0\) otherwise. Here \(\gamma\) is a constant. Examine the \(\dot{r}_i = \partial H / \partial p_i\) equation carefully in the limit that \(p_i \to 0\) and show that the \(r_{i,\alpha} B_{\alpha\beta} p_{i,\beta}\) term does, indeed, produce a shearing effect. **Hint**: One way to do this is to plot the component of \(\dot{r}_i\) that is affected by this term as a function of \(r_i\) in the limit that \(p_i \to 0\).

3. A particle of mass \(m\) with coordinate \(x\) and momentum \(p\) moves in a double-well potential of the form

\[
U(x) = \frac{U_0}{a^4} (x^2 - a^2)^2.
\]

Sketch the contours of the constant-energy surface \(H(x, p) = E\) in phase space for the following cases:

a. \(E < U_0\).

b. \(E = U_0 + \epsilon\), where \(\epsilon \ll U_0\).

c. \(E > U_0\).

4. Consider a system with coordinate \(q\), momentum \(p\), and Hamiltonian

\[
H = \frac{p^n}{n} + \frac{q^n}{n},
\]
where \(n \) is an integer larger than 2. Show that if the energy \(E \) of the system is chosen such that \(nE = m^n \), where \(m \) is a positive integer, then no phase space trajectory can ever pass through a point for which \(p \) and \(q \) are both positive integers. Consider a system with coordinate \(q \), momentum \(p \), and Hamiltonian

\[
H = \frac{p^n}{n} + \frac{q^n}{n},
\]

where \(n \) is an integer larger than 2. Show that if the energy \(E \) of the system is chosen such that \(nE = m^n \), where \(m \) is a positive integer, then no phase space trajectory can ever pass through a point for which \(p \) and \(q \) are both positive integers.

Hint: You might find Fermat’s last theorem helpful here.

5. Consider an ensemble of one-particle systems, each evolving in one spatial dimension according to an equation of motion of the form

\[
\dot{x} = -\alpha x
\]

where \(\alpha > 0 \), and where \(x(t) \) is the particle position at time \(t \). The Liouville equation for the ensemble distribution \(f(x, t) \) is

\[
\frac{\partial f}{\partial t} - \alpha x \frac{\partial f}{\partial x} = \alpha f
\]

a. Suppose that at \(t = 0 \), the ensemble distribution is given by

\[
f(x, 0) = \frac{1}{\pi} \frac{\sigma}{\sigma^2 + x^2}
\]

where \(\sigma \) is a constant. Find the ensemble distribution \(f(x, t) \) at all time, and discuss the behavior of this distribution as \(t \to \infty \). Finally, show that your distribution function \(f(x, t) \) is normalized for all \(t \).

Hint: Show that the substitution \(f(x, t) = e^{\alpha t} \tilde{f}(x, t) \) yields an equation for a conserved distribution \(\tilde{f}(x, t) \). Next, try multiplying the \(x \) in the initial distribution by a function \(g(t) \), where \(g(0) = 1 \), and use the Liouville equation to derive an equation that \(g(t) \) must satisfy.

b. Repeat for the case that the initial distribution is a Gaussian,

\[
f(x, 0) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-x^2/2\sigma^2}
\]

where \(\sigma \) is a constant.