Lectures

PDF files for...


Lecture 1 -- Classical microstates, Newtonian, Lagrangian and Hamiltonian mechanics, ensemble concept.

Lecture 2 -- Liouville's Theorem, non-Hamiltonian systems, the microcanonical ensemble

Lecture 3 -- Thermal equilibrium; the arrow of time.

Lecture 4 -- Classical virial theorem; Legendre transforms; the canonical ensemble.

Lecture 5 -- Estimators, energy fluctuations, the isothermal-isobaric ensemble

Lecture 6 -- The classical ideal gas

Lecture 7 -- The grand canonical ensemble

Lecture 8 -- Structure and distribution functions in classical liquids and gases

Lecture 9 -- Distribution functions in classical liquids and gases (cont'd)

Lecture 10 -- Distribution functions and perturbation theory

Lecture 11 -- Reaction coordinates and free energy profiles

Lecture 12 -- Review of the postulates of quantum mechanics

Lecture 13 -- Basic principles of quantum statistical mechanics

Lecture 14 -- The path integral formulation of quantum statistical mechanics

Lecture 15 -- The path integral formulation (cont'd) -- functional integrals

Lecture 16 -- Expansion about the classical path and the saddle-point approximation.

Lecture 17 -- Expectation values and thermodynamics from path integrals.

Lecture 18 -- The quantum ideal gases -- general formulation

Lecture 19 -- The ideal fermion gas

Lecture 20 -- The ideal boson gas

Lecture 21 -- Classical linear response theory, time correlation functions and transport coefficients.

Lecture 22 -- Absorption/emission spectra and quantum time correlation functions.

Lecture 23 -- Quantum linear response theory.

Lecture 24 -- The generalized Langevin equation and vibrational dephasing.

Lecture 25 -- Overview of critical phenomena; the Ising model.

Lecture 26 -- Mean field theory and exact solutions of the Ising model.

Lecture 27 -- Introduction to the renormalization group and scaling.

Lecture 28 -- Linearized RG theory, universality and scaling relations.