Application Servers
G22.3033-011

Session 11 - Main Theme
XML-Based Capabilities
in Component-Based Environments

Dr. Jean-Claude Franchitti

New York University
Computer Science Department
Courant Institute of Mathematical Sciences

Agenda

- Channel Independence and Pervasive Devices
 - Connected Devices
- XML in Component-Based Development Environments
 - XML and JavaBeans/EJBs
 - Deployment Descriptors for OMA Services
 - More on the OMA Persistence Service
- EAI Environments
- B2Bi Environments (e.g., WebMethods Framework)
- Summary
- Readings
- Assignment #8 (will be handed out on 11/26, due: 12/10)
Summary of Previous Session

- Web-Enabling Facilities (continued)
 - Java Web Start (JWS)
- COM / DCOM Component Model and OLE
- COM+ MTS Services: Transactions and Security
- COM+ Message Queuing
- Summary
- Readings
- Assignment #7 (continued)

Application Servers Architectures

- Application Servers for Enhanced HTML (traditional)
 - a.k.a., Page-Based Application Servers
 - Mostly Used to Support Standalone Web Applications
- New Generation Page-Based Script-Oriented App. Servers
 - First Generation Extensions (e.g., Microsoft IIS with COM+/ASP)
 - Servlet/JSP Environments
 - XSP Environment
 - Can now be used as front-end to enterprise applications
 - Hybrid development environments
- Distributed Object Computing Platforms
 - Provide an infrastructure for distributed communications enabling
 - Still need to merge traditional web-oriented computing with object computing
- Object Management Architectures
 - DOC Platform + APIs to reusable services and facilities
- OMAs + Component Models -> J2EE, CCM, DNA
- MDAs with Web Services- and Channels/B2Bi-Enabling services
Part I

Connected Devices

Also See Session 6 Handout on:
“The Basics of the Palm Platform and the PalmOS Emulator”

XML Tools for Information Appliances

- Java Soap library
 - KVM kSOAP (http://ksoap.enhydra.org/)
- Environment Needed to Run XML-Based Java Applications
 - **Java KVM for J2ME**
 - Java Kilobyte Virtual Machine (KVM) designed to operate with as little as 160 to 512 KB of memory
 - **NanoXML**
 - Lightweight DOM-style XML parser and document generator
 - **Palm OS Emulator (POSE)**
 - Software that emulates the hardware of different Palm devices (Palm III, Vx, VII, etc.)
 - Can be used as a unit testing platform
- Also See http://webdev.apl.jhu.edu/~rbe/kvm/
Sample Palm Application

- Beaming contact information from a custom Palm database

![Diagram showing Palm OS and Java KVM](image)

Part II

XML in Component-Based Environment:

1. XML and JavaBeans/EJBs
2. Deployment Descriptors for OMA Services
3. More on the Persistence Service
 (focused on EJBs as CCM is nascent)

*Also See Session 6 Handouts on:
“Enterprise JavaBeans Patterns”
“Persistence in EJB Frameworks”
“Efficient CMP Development”*
XML Support for JavaBeans and EJBs

- XML and JavaBeans integration
 - e.g., BML, Coins, etc.
- JavaBeans and EJB state persistence using XML
 - XML serialization for Java (e.g., Koala, etc.)
- XML Application Services as JavaBeans/EJBs
 - e.g., Parsing, rendering, querying, messaging beans

Towards XML Model Based Computing

- Step 1: Document Object Model
- Step 2: XML Data Binding
- Step 3: Standard XML Information Models
- Step 4: XML Application Services Frameworks
 - Processing, Rendering, Querying, Secure Messaging
- Step 5: XML-Based “Web Object Model”
 - Web Services Architecture
- Step 6: XML Model Driven Architectures (to come)
EJB Component/Programming Model

Entity Beans in EJB Application Servers

- Represent sets of data (all or part of a database table or a view)
- Functionality limited to creation, update, and deletion of data
- Manage persistence of data
- Maintained in a cache
- Can be container or bean managed
 - Container-managed beans are under the control of an application server for persistence and transaction management
 - Container-managed beans are restricted in the type and complexity of data they can manage
 - Bean-managed beans rely on user provided code for persistence and transaction management
Session Beans
in EJB Application Servers

- Handle the business logic of EJB applications
- May use multiple entity beans to gather application data

Anatomy of a CMP Bean

- EJB remote interface (extends javax.ejb.EJBObject)
 - Contains method signatures for any method that accesses or modifies data stored in the bean
- EJB remote implementation (implements javax.ejb.EntityBean)
 - Provides an implementation of all the methods defined in the remote interface, in addition to methods required by the application server
- EJB home interface (extends javax.ejb.EJBHome interface)
 - Declares method signatures for any method that creates new instances of the bean, and for all methods that are used to retrieve instances of the bean (finder methods)
- EJB key
 - Contains the unique primary key implementation for the bean
 - any class that is a legal value type in RMI-IIOP
Anatomy of a CMP Bean
(continued)

- EJB finder helper interface (optional)
 - Contains one static java.lang.String field for each finder method declared in the EJB home interface
 - Strings are initialized with SQL queries executed dynamically when bean instances are retrieved in a finder method
 - Some server ignore this file and put queries in XML deployment descriptors using proprietary query language formats
- Deployment descriptor (XML -> serialized data object)
 - Names of EJB classes/interfaces, list of persistent fields, etc.
- Database scripts
 - Application server may generate them

EJB Generation
(e.g., IBM EJBMaker, BEA WebGain Studio)

```xml
<?xml version="1.0"?>
<!DOCTYPE ejbmaker SYSTEM "ejbmaker.dtd">
<ejbmaker>
  <!default attributes for beans -->
  <transaction-attr>TX_REQUIRED</transaction-attr>
  <isolation-level>SERIALIZABLE</isolation-level>
  <run-as-mode>SPECIFIED_IDENTITY</run-as-mode>
  <re-entrant>false</re-entrant>

  <!A Simple Account CMP entity EJB -->
  <bean name = "Account" type = "entity">
    <persistent_field dt="int" col_dt="INTEGER">
      ACCTNUMBER
    </persistent_field>
    <persistent_field dt="java.lang.String" col_dt="VARCHAR(13)">
      SSN
    </persistent_field>
    <persistent_field dt="double" col_dt="DOUBLE">
      BALANCE
    </persistent_field>
    <finder_method name="findNegativeAcct">
      <sql>
        SELECT * FROM EJB.ACCOUNTBEANTBL WHERE BALANCE < 0
      </sql>
    </finder_method>
    <bean>
  </ejbmaker>
```
Container Managed Persistence Architecture

Bean Managed Persistence Architecture
EJB Development Approach 1

- Handcode Everything:
 - EJB remote interface
 - EJB remote implementation
 - EJB home interface
 - EJB key
 - EJB finder helper interface
 - Deployment descriptor
 - Database scripts

EJB Development Approach #2: Handcode the Bean and Descriptor

![Diagram: Handcoding development process](image.png)
EJB Development Approach #3: Graphical Bean and Descriptor Generator

![Graphical development process](image)

Four Patterns for Managing Persistence

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Entity Mgt.</th>
<th>Uses Entity Beans</th>
<th>Uses Session Beans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Container-managed Entity Beans with Session Beans</td>
<td>Container</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2. Bean-managed Entity Beans with Session Beans</td>
<td>Bean</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Entity Beans Only</td>
<td>Container</td>
<td>Yes</td>
<td>No*</td>
</tr>
<tr>
<td>4. Session Beans Only</td>
<td>N/A</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Session beans are used in this example for complex database interactions, but they do not serve as a front-end for Entity beans. Instead, they access the database directly as an Entity bean would.
Container-Managed Entity Beans + Session Beans

<table>
<thead>
<tr>
<th>Entity Management</th>
<th>Uses Entity Beans</th>
<th>Uses Session Beans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

![Diagram of Container-Managed Entity Beans + Session Beans]

Beans-Managed Entity Beans + Session Beans

<table>
<thead>
<tr>
<th>Entity Management</th>
<th>Uses Entity Beans</th>
<th>Uses Session Beans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bean</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

![Diagram of Beans-Managed Entity Beans + Session Beans]
Entity Beans Only

<table>
<thead>
<tr>
<th>Entity Management</th>
<th>Uses Entity Beans</th>
<th>Uses Session Beans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Session Beans Only

<table>
<thead>
<tr>
<th>Entity Management</th>
<th>Uses Entity Beans</th>
<th>Uses Session Beans</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Performance Characteristics

Pattern Comparison
400 users, 50 iterations, 4 server instances/200MB

<table>
<thead>
<tr>
<th>Pattern Type</th>
<th>Max</th>
<th>Avg</th>
<th>90th</th>
<th>Min</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session Only</td>
<td>6.36</td>
<td>0.20</td>
<td>0.15</td>
<td>0.02</td>
<td>0.612</td>
</tr>
<tr>
<td>Container Managed</td>
<td>6.14</td>
<td>0.31</td>
<td>0.79</td>
<td>0.04</td>
<td>0.786</td>
</tr>
<tr>
<td>Bean Managed</td>
<td>7.02</td>
<td>0.31</td>
<td>0.95</td>
<td>0.04</td>
<td>0.687</td>
</tr>
</tbody>
</table>

Performance Characteristics (continued)

Pattern Comparison
100 users, 50 iterations, 4 server instances/200MB

<table>
<thead>
<tr>
<th>Pattern Type</th>
<th>Max</th>
<th>Avg</th>
<th>90th</th>
<th>Min</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity Only</td>
<td>4.49</td>
<td>0.30</td>
<td>0.35</td>
<td>0.08</td>
<td>0.426</td>
</tr>
<tr>
<td>Container Managed</td>
<td>1.52</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.112</td>
</tr>
</tbody>
</table>
SQL Statements v.s. Finder Methods

<table>
<thead>
<tr>
<th></th>
<th>Max</th>
<th>Avg</th>
<th>90th</th>
<th>Min</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL</td>
<td>5.54</td>
<td>0.20</td>
<td>0.15</td>
<td>0.04</td>
<td>0.571</td>
</tr>
<tr>
<td>Finder Methods</td>
<td>9.99</td>
<td>1.06</td>
<td>2.92</td>
<td>0.05</td>
<td>1.457</td>
</tr>
</tbody>
</table>

Summary of Findings

- Pattern 1: (better choice)
 - Great for design and flexibility
 - Good separation of presentation, data, and business logic
 - Fast time to market
- Pattern 4:
 - Best for performance and throughput
- Pattern 3:
 - Faster time to market than pattern 1
 - No need to code session beans
 - Prohibitive performance cost
Part III

EAI and B2Bi:
Enterprise Application Integration
and Business to Business Integration

Also See Session 11 Presentations:
“Enterprise Application Integration (EAI)”
“Practical Application of EAI”
“The STP and T+1 Application”

and the Session 11 Handout on:
“Enterprise Application Integration (EAI)”

XML & DBMSs Comparison

- Both separate data from rendition/presentation info
- Similar languages
 - DBMSs: Forms and Reporting, DDL, DQL, DCL
 - XML: XSL, XQL, and processing instructions
- No DML in XML
 - XML is paired with a scripting or programming language
- Validation capabilities
 - DBMSs: datatyping, relationship constraints
 - XML: data type validity and semantic consistency checks
- XML can handle data too complex for some databases
- XML interchangeable form of data vs. multidatabases
MOM Application Development Tools

- Serializing Java objects into XML using reflection
 - Sims Computing lightweight XML messaging framework (based on JMS)
 - xmlBlaster Message Oriented Middleware project
 - MOM platform that uses XML for the message meta-data and quality of service information
 - Messages can be filtered using XPath expressions which match against the XML header document
- Developing MOM applications using the SAX/DOM APIs

Architecture of an XML MOM Application Server
Sample XML Application Flow

```
<?xml version="1.0"?>
<author-list>
  <author>
    <au_id>400132-1376</au_id>
    <au_lname>White</au_lname>
    <au_fname>Johnson</au_fname>
    <phone>600-7215</phone>
    <address>4001 Bigge Rd.</address>
    <city>Park</city>
    <state>CA</state>
    <country>US</country>
    <postal code>94625</postal code>
  </author>
</author-list>
```

EAI-Based Architectures

Comparison of EAI Packages

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified Applications Architecture (UAA)</td>
<td>CrossWorlds Software</td>
<td>NS</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>BusinessWare</td>
<td>Vitria Technologies</td>
<td>NSH</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>MQ Series Family</td>
<td>IBM/NEON</td>
<td>NSH</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B2Bi Integration Serv.</td>
<td>WebMethods</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Rendezvous</td>
<td>TIBCO</td>
<td>NS</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

H=HP UX, S=Sun Solaris, I=IBM AIX, N=MS Windows, 5 = strongest

B2Bi: B2B commerce and Enterprise Application Integration (EAI)

- **B2Bi is based on the transformation and routing of XML documents**

- **B2Bi patterns:**
 - Direct Application Integration
 - Data Exchange
 - Closed Process Integration
 - Open Process Integration

- **Existing Frameworks:**
 - WebMethods B2Bi EAI framework
 - MQSI (MQSeries Integrator)

- **See STP/T+1 in Sub-Topic 2/3 Presentations**
B2Bi Direct Application Integration

Requirements

- Ability to interact directly with application APIs
- Integration brokers with built-in support for adapters, transformations, and asynchronous content0based routing
- Same Integration Broker on both ends
- Secure transport, component authentification, and user authorizations
- Federated security control
Data Exchange B2Bi

Requirements

- Translation of data native to an application into a common document format, and transmission via a gateway
- No constraints on the presence of Integration Brokers
- B2B transactions enabled via a common data exchange format
Closed Process Integration B2Bi
Architecture

Principal participant responsible for managing processes
Other participants are secondary, and do not have visibility into the entire process
Requires the introduction of business process integration (BPI) services
 - B2Bi product offerings are beginning to incorporate BPI as an essential component
 - In this case, B2Bi enables the integration of logical business process elements expressed as activities rather than data
Open Process Integration B2Bi

Architecture

Introduces the notion of shared processes rather than operating from a centralized master process manager model.

Each participant is actively managing business processes within its domain.

The BPI layer must support fine-grained control of managed processes.
EAI Frameworks and XML

- XML complements EAI technology
 - Powerful meta language
 - Simplicity
 - Separation of content and presentation format
 - Common open standard
- EAI Frameworks must address the limitations of XML
 - Limited Semantics Interpretation
 - Lack of data transformation facilities
 - Inefficiencies of text-based documents
 - Absence of component-based routing

EAI Provides Data Transformations
Efficiency: Binary Objects on the Wire

Part V

Conclusion
Summary

- Java and XML technologies are available on connected devices
- While bean-managed persistence provides the most portability, it generally fall short with respect to productivity.
- Container-managed persistence in EntityBeans provides the most productivity
- Container-managed persistence typically provide the highest degree of performance since, together, the code generation tools and the bean programmer can take advantage of container-specific mapping and caching technology
- Container-managed persistence currently falls short in the area of portability

Summary (continued)

- XML complements application server technology by conveying structured data in a portable way
- XML complements EAI technology, but future EAI framework still need to address XML’s limitations
- Web services platforms provide a shift from traditional enterprise distributed object computing technology to P2P computing with support for pervasive devices, discovery and intelligent agent capabilities
Readings

- Readings
 - Building Application Servers: Part II, and III
 - Handouts posted on the course web site
 - Explore Palm Environment
 - Explore EAI/B2Bi Environment
 - Read related white papers/documentation on the Palm, and EAI/B2Bi environments

Project Frameworks

- Project Frameworks Setup (ongoing)
 - Apache Web Server (version 1.3.20, www.apache.org)
 - Perl (version 5.x, www.perl.com), PHP
 - Microsoft IIS with COM+ and ASP (), ChiliSoft
 - Apache Tomcat
 - Macromedia JRun
 - Apache Cocoon 2/XSP
 - Visibroker, Orbacus
 - RMI-IIOP
 - Windows 95/98/NT/2000 or Software AG’s EntireX
 - WebLogic, WebSphere, JBoss, Enhydra, OpenEJB
 - Inprise AppServer, iPlanet.com iPlanet, Sybase EAServer, Oracle 9i, IONA iPortal, Xooology Concerto, Aligo M-1, Advanced Network Systems Webix
 - GOAL Group OpenCCM, ExoLab.org OpenCCM, iCMG K2-CCM (C++), MICO/E (Eiffel ORB), JavaCCM, TAO Group, IONA iPortal (no CCM), Borland AppServer (no CCM), Sourceforge ML3 ("Mission Impossible 3") and CIF projects
 - Microsoft DNA
 - Apache’s XercesJ, XalanJ, XMLSpy, Antenna House XML Formatter, Apache’s FOP, X-smiles
 - JWS, XMI Toolkit, IBM’s Web Service Toolkit
 - POSE, KVM for J2ME, NanoXML
 - IBM Alphaworks WSTK, XMI Toolkit, EJBMaker, WebMethods, etc.
Assignment

- Explore the references to Channel Independent, and EAI/B2Bi Application Server technology
- Homework #6 due date is 11/19/01
- Homework #7: due date is 11/26/01
- Homework #8: due date is 12/10/01

Next Session:
Web Services Platforms (Part I)

- XML-RPC
- SOAP
- UDDI
- WSDL
- C# and .Net