Extreme Java
G22.3033-007

Session 3 - Sub-Topic 6
XML Information Retrieval

Dr. Jean-Claude Franchitti

New York University
Computer Science Department
Courant Institute of Mathematical Sciences

Agenda

■ Applications of XML to Database Technology
 ■ XML Query Languages
 ■ XPath
 ■ XML Queries
■ XQuery: A Query Language for XML
■ XML Query Engines
■ XML Object Persistence
■ Advanced XQuery Concepts
■ Presentation Oriented Publishing (POP)
 Frameworks
XML-Based Retrieval Development

- XML Software Development Methodology
 - Language + Stepwise Process + Tools

- XML Application Development Infrastructure
 - Metadata Management (e.g., XMI)
 - XML Query Engine (3rd party software)
 - XML Tools (e.g., XML Editors)

- XML Applications Involved in the Rendering Phase:
 - Application(s) of XML
 - XML-based applications/services (markup language mediators)
 - MOM, POP, Persistence service
 - Application Infrastructure Frameworks

XML Data Retrieval Patterns

- XML Data Retrieval Operations
 - Access
 - Query
 - Manipulate

- Multiple XML Data Sources Integration
- XML Message Filtering
- DBMS Data Views
- Database System Interfacing
Part I

Applications of XML to Database Technology

Towards XML Application Services

- Processing
 - DOM Extensions
 - Binding Extensions
 - Component Frameworks (reusable component models)
 - Model-Based Automation (MDA)
- Rendering
 - DOM 2.1.0, SAX 2.0, JAXP 1.1 & TraX, XSL-FO 1.0
 - Component Frameworks
- Querying
 - XQuery 1.0, XSLT 1.1/2.0, XPath 1.0/2.0
- Security (signatures encryption/decryption, etc.)
- Etc.
Retrieval Software Development

- Languages (XML-QL, YaTL, XQL, etc.)
 - Data Model + Operations + Syntax
- Process ("XUP")
- Frameworks
 - Custom Engine
 - e.g., XQEngine
 - Translation to SQL
 - e.g., DB2XML, Oracle’s XML I/F
 - Translation to OQL
- XML Query Infrastructure
 - XPath Processors: Saxon 6.1, Xalan-J 2.1.0
 - XQuery Processors
 - SQLX

XML Query History

- SGML Query Facilities
- Ad-hoc Approach to Query Languages
- 02/98: XQL Proposal
- 08/98: XML-QL Submission
- 12/98: W3C QL’98 Workshop
 - Candidate Requirements for XML Query
 - Database Desiderata for an XML Query Language
- 11/99: XPath Recommendation
W3C XML Query WG

- 07/99: WG Proposal
- 09/99: WG Official Inception
- Today:
 - 30 W3C Member Companies
 - 11 Meetings, 60+ Telcons
 - Heartbeat every Three Months
 - Proposed Recommendation(s)
- Goals:
 - XML Query Data Model for XML Documents
 - Query Operators for XML Query Data Model
 - Query Language Based on XML Query Operators

W3C’s Related Standards

- XML Query Specifications:
 - *XML Query Requirements* (02/16/01 - orig. 01/00)
 - *XML Query Use Cases* (06/08/01 - orig. 08/00)
 - *XQuery 1.0 and XPath 2.0 Data Model* (06/07/01 - orig. 05/00)
 - *XQuery 1.0 Formal Semantics* (06/07/01 - orig. 12/00)
 - *XQuery 1.0: An XML Query Language* (06/07/01)
 - *XML Syntax for XQuery 1.0 (XQueryX)* (06/07/01)
- XPath 2.0 Specifications
 - *XPath Requirements Version 2.0* (02/15/01)
 - *XQuery 1.0 and XPath 2.0 Data Model* (06/07/01)
Related XML Technologies

- XPath
- XSL
- XPointer
- XML Schema
- XML Infoset
- WAI
- Internationalization
- IETF DASL
 - Distributed Authoring Searching and Locating

Properties of RDBMS Queries

- Pattern + Filter + Construction clause
- Construction clause may have ordering subclauses
- Queries may perform joins across multiple input sets
- Queries may generate intermediate variables or path expressions
Mapping XML to a RDBMS

- SQL-like queries that return XML documents
 - e.g., Microsoft IIS + SQL Server
 - e.g., Oracle Database Server
- Broad spectrum of possible mappings
 - Hierarchical v.s. limited RDBMS tree structure

JDBC Refresher

- See section 6.2 of XML and Java textbook
 - Importing JDBC Package
 - Loading a JDBC Driver
 - Connecting to a Database
 - Submitting a Query
XML Embedded in SQL (SQLX)

- SQL Embedded in XML
 - See Section 6.3 of XML and Java textbook
 - Front-end to RDBMS that provides XML-based Input/Output
 - Translates XML query into sequence of JDBC calls, and converts the result to a DOM structure which is returned

Part II

XML Query
XML Query Requirements (Part I)

- General:
 - Declarative Language
 - Readable XML Syntax
 - Protocol Independence
 - Standard Error Conditions
 - Support for Future Updates

- Data Model
 - Based on XML Infosets
 - Namespace Aware
 - Support for XML Schema Data Types
 - Support Inter/Intra Document References

XML Query Requirements (Part II)

- Query Functionality:
 - Operators on All Data Types
 - Text Operators Across Element Boundaries
 - Hierarchies and Sequences
 - Combination of Data from Various Locations
 - Aggregation and Sorting
 - Combination of Operators (Queries as Operands)
 - Support NULL values
 - Preservation of Structure/Identity
 - Operations on Names/Schemas
 - Extensibility & Closure
XML Query Use Cases

- Approach
 - Description, DTD/Schema, Input, Queries, Results
- Existing Use Cases
 - XMP (examples)
 - TREE (queries that preserve hierarchy)
 - SEQ (queries based on sequence)
 - R (relational data access)
 - TEXT (text search)
 - NS (namespace-based queries)
 - PARTS (recursive parts queries)
 - REF (queries based on references)

XML Query Data Model

- Information Presented to a Query Processor
- Augmented Infoset:
 - XML Schema Data Types (PSVI)
 - Document Collections
 - References
- Node-Labeled Tree Constructor Model with Node Identity
- Infoset Mapping to Query Data Model is Defined as Part of the Specification
XML Query Data Model
(continued)

- **Nodes**
 - Node = DocNode | ElemNode | AttrNode | ValueNode
 | NSNode | PINode | CommentNode | InfoItemNode

- **XML Schema Primitive Types**
 - string, boolean, ID, IDREF, decimal, etc.

- **Collections**
 - list [T], set {T}, bag {T}, disjoint/union (T1 | T2),
 tuple (T1, …, Tn)

- **References**
 - ref(T)

XML Query Algebra

- **Defines Static and Dynamic Semantics**
 - Static Semantics are Type Inference Rules
 - Relate Algebra Expressions to Types
 - Dynamic Semantics are Value Inference Rules
 - Relate Algebra Expressions to Values

- **Issues:**
 - Algebra Type System Alignment with XML Schema
 - Operators on Schema Simple Types not Defined
 - Lexical Representation of Schema Simple Types not Defined
Constructors

- **Construct Values in XML Query Data Model**

 attrNode : (Ref(QNameValue), Ref(ValueNode))
 -> AttrNode
 ValueNode = QNameValue | StringValue | DecimalValue | ...
 qnameValue : (uriReference | null, string,
 Ref(Def_QName))
 -> QNameValue
 decimalValue : (decimal, Ref(Def_decimal))
 -> DecimalValue

 <part price=10.50/>
 <xsd:attribute name="price" type=xsd:decimal/>
 attrNode(ref(qnameValue(null, “price”),
 Ref(Def_QName)),
 ref(decimalValue(10.50, Ref(Def_decimal))))

Assessors

- **Deconstruct Values in XML Query Data Model**

 name : AttrNode -> Ref(QNameValue)
 value : AttrNode -> Ref(ValueNode)
 type : AttrNode -> Ref(ElemNode)

 <xsd:attribute name="price" type=xsd:decimal/>
 <part price=10.50/>

 name(A1) = ref(qnameValue(null, “price”))
 value(A1) = ref(decimalValue(10.50, Ref(Def_decimal)))
 type(A1) =
 <!-- data model representation of simple type
 decimal -->
Part III

XML Query Languages

XQuery

- Functional Language
 - Query Represented as an Expression
- Expressions can be Nested without Restriction
- Input/Output of an XQuery are Instances of the XML Query Data Model
- Based on OQL, SQL, XML-QL, XPath
- Readable XML Syntax
XQuery Expressions

- Path Expressions
- Element Constructors
- FLWR Expressions
- Expressions with Operators/Functions
- Conditional Expressions
- Quantified Expressions
- List Constructors
- Expressions to Test/Modify Datatypes

XQuery Path Expressions

- Abbreviated XPath 1.0 Syntax
 - Find figure(s) with caption “Tree Frogs” in second chapter of “zoo.xml”
 - `document(“zoo.xml)/chapter[2]/figure[caption = “Tree Frogs”]`
- Extensions
 - Dereference Operator
 - Range Predicate
 - Find captions of figures referenced by `<figref` elements in “Frogs” chapter of “zoo.xml”
 - `document(“zoo.xml”)/chapter[title = “Frogs”]/figref/@refid->fig/caption`
XQuery Element Constructor

- Start/End Tag + Enclosed List of Expressions
 - Generate an element with a computed name that contains nested elements:

    ```xml
    <$tagname>
    <description> $d </description>
    <price> $p </price>
    </$tagname>
    ```

XQuery For Let Where Return (FLWR)

- FOR and LET Clause
 - Generate a List of Tuples that Preserves Doc Order
- WHERE Clause
 - Applies a Predicate to Eliminate Some Tuples
- RETURN Clause
 - Executed on Resulting Tuples -> Ordered Output List
- Syntax:
  ```
  FOR var IN expr  WHERE expr  RETURN expr
  LET var := expr
  ```
FLWR Sample Expressions

- List titles of books published by MK in 98
 FOR b IN document (“bib.xml”)//book
 WHERE $b/publisher$ = “Morgan Kaufmann”
 AND $b/year$ = “1998”
 RETURN $b/title$

- List each publisher and its books average price
 FOR p IN
 distinct(document(“bib.xml”)//publisher)
 LET $a :=$ avg(document(“bib.xml”)
 /book[publisher = p]/price)

XQuery Operators and Functions

- Infix/Prefix Operators
 - e.g., Infix Operators BEFORE and AFTER
- Parenthesized Expressions
- Arithmetic/Logical Operators
- Collection Operators
 - e.g., UNION, INTERSECT, EXCEPT
- Functions Can Be Defined in XQuery
Sample Operators and Functions

Find max depth of “partlist.xml”

NAMESPACE
xsd="http://www.w3.org/2001/03/XMLSchema-datatypes"

FUNCTION depth(ELEMENT $e) RETURNS xsd:integer
{
 IF empty ($e/*) THEN 1
 ELSE max (depth($e/*))+1
}

depth(document("partlist.xml"))

XQuery Conditional Expressions

FOR $h IN //holding
 RETURN
 <holding>
 $h/title
 IF $h/@type="Journal" THEN $h/editor
 ELSE $h/author
 <holding> SORTBY (title)
XQuery Quantified Expressions

- Example 1:
 FOR b IN //book
 WHERE SOME p IN b//para SATISFIES
 contains(p, “sailing”) AND contains(p, “windsurfing”)
 RETURN b/title

- Example 2:
 FOR b IN //book
 WHERE EVERY p IN b//para SATISFIES
 contains(p, “sailing”)
 RETURN b/title

XQuery List Constructors

- List encloses zero or more expressions in square brackets, separated by commas
- List of member variables: [x, y, z]
- Empty list: []
XQuery Operators on Data Types

- `INSTANCEOF (instance, type)`
- `CAST`
 - Convert value from one datatype to another
- `TREAT`
 - Causes the query processor to treat an expression as if its datatype were a subtype of its static type

XQuery Outstanding Issues

- Integration with XPath 2.0
- Alignment of XQuery and XML Query Algebra Syntax
- Internationalization
 - e.g., Collation Sequences for Sorting, Strings ops
- XML Query Syntax
- Operators and Functions TBD
Part IV

XML Query Engines and Advanced Concepts

Various Approaches

- **XQEngine**
 - Full-text search engine for XML
 - Java APIs available
 - W3C XQuery Specification Support

- **DB2XML**
 - Standalone tool (with GUI or command line)
 - Servlet to dynamically generate XML-documents
 - DB2XML API

- Oracle XML Developer Kit (**XDK**)
- Microsoft **SQL Server** support for XML
XML Object Persistence

- Started as **SODL and XMOP**
 - Simple Object Definition Language
 - XML Metadata Object Persistence
- XML and JavaBeans integration (e.g., BML, Coins, etc.)
- XML and EJB integration
 - See XML Development with Java 2 (chapter 8)
- XML serialization for Java (e.g., Koala, etc.)
- SOAP - XML-RPC protocol

Advanced XQuery Concepts

- Mainstream XQuery Engines
 - Software AG’s QuiP
 - H. Katz XQEngine
- Experiment with Complex Queries and QuiP
POP Frameworks

- Client-Side POP
 - IE5
- Server-Side POP
 - Cocoon & XSP
 - Rocket
 - CPAN’s Perl Framework

Part V

Conclusions
Summary

- Applying XML to Database Technology allows the viewing of database data as an XML document.
- XML Query is based on a well defined Data Model and Algebra
- Various syntaxes are possible for an XML Query Language
- XML Query Engines are infrastructure components that support XML Query

Summary (continued)

- Bindings approaches are currently implemented between XML and JavaBeans/EJBs
- Software AG’s Quip implements complex query processing as per XQuery 1.0
- Server-side POP is the approach of choice for XML processing