Running and Profiling with WSAD 5.1

Page 4 of 4

Lab Exercise: Button Race Application

Objective

The Button Race Application is a simple Java AWT-based, multithreaded application that we will use to examine the profiling features in WSAD:

[image: image1.wmf]

Figure 1: Button Race Application

Overview

The Profiling Tool in WSAD offers many features that enable developers to identify performance and memory usage patterns in a running Java application. You can profile various kinds of applications, including Java and Web applications, irrespective of the host application server. The tool collects data related to the program's run-time behavior and presents this data in both graphical and tabular views

In this lab, we will work with a Java AWT-based, multithreaded application that allows us to examine all of the salient features of the profiling support built into WSAD. We can alter the characteristics of our Button Race application (e.g., thread sleep time, number of buttons in race, etc.) to see how the profiling statistics are affected.

The typical sequence of steps required when profiling an application are the following:

1. Set profiling preferences

2. Set profiling filters

3. Launch or attach a process

4. Use the Profiling and Logging views to study the data being collected

5. Save profiling data or resources if you expect to use them again

Note: In order to profile an application, the Agent Controller must be installed and running on the host where the application executes.

Your Challenge

1. Use the source code provided in the Solution: Source Code section to create and test the Button Race application (or your own customized version of this application).

2. Launch the application with the profiler by selecting the Profile menu and then Launch > Java Process.

3. In the profiling wizard, select the project and the main class within the project (ButtonRace.java). Select destination project and monitor in the Destination dialog and set any filters you wish to apply in the Profiling Filters dialog. Set specific profiling options in the Profiling Options dialog and desirable limits in the Profiling Limits dialog. Click Finish to begin profiling the application.

4. The Profiling Console will open and display program input and output. The associated agent will monitor the application (shown with a Monitoring symbol) until it has run to completion.

5. Note the profiling objects that are created and displayed in the Profiling Monitor, and are identified both by name and a process ID number (PID). In the monitored state, you can run garbage collection (click the Run Garbage Collection button) or, if available, dump object references (click the Collect Object References button from the main toolbar).

6. If the agent is in the running state but is not collecting data (shown with the Paused symbol), the Refresh Views button will not have any effect. You must start monitoring the agents to get the latest data. Select Start Monitoring from the pop-up menu of the agent.

7. If the agent is in the terminated state (shown by the Terminated symbol), it means that it has finished monitoring the application, which has run to completion.

8. To analyze the data collected from the profiling session, open a Profiling and Logging view. To refresh the view content, click Refresh Views.

9. Experiment with the settings in your application (e.g., thread sleep times, number of buttons in race, etc.) and examine the results in the profiling data. Have fun!

Solution: Source Code

ButtonRace.java

package lqtraining;

import java.awt.*;

import java.awt.event.*;

public class ButtonRace extends Frame {

 private static final int RACER_WIDTH = 60;

 private static final int RACER_HEIGHT = 30;

 private int racerCount;

 private Button[] racers;

 public ButtonRace(String[] racerNames) {

 racerCount = racerNames.length;

 racers = new Button[racerCount];

 this.setLayout(null);

 Button btnFinishLine = new Button();

 btnFinishLine.setBounds(270,20,10,300);

 this.add(btnFinishLine);

 for(int i = 0; i < racerCount; i++) {

 racers[i] = new Button(racerNames[i]);

 racers[i].setBounds(10,20 + (30 * i),RACER_WIDTH,RACER_HEIGHT);

 this.add(racers[i]);

 RacerThread rt = new RacerThread(this, i);

 rt.start();

 }

 this.addWindowListener(

 new WindowAdapter() {

 public void windowClosing(WindowEvent e) {System.exit(0);}

 }

);

 }

 public void moveRacer(int racerID) {

 int xpos = racers[racerID].getX();

 int ypos = racers[racerID].getY();

 racers[racerID].setLocation(xpos + 10, ypos);

 this.doLayout();

 }

 public static void main(String[] args) {

 ButtonRace br = new ButtonRace(new String[]{"BEA", "IBM", "Microsoft", "Oracle"});

 br.setBounds(100,100,400,200);

 br.setTitle("The Great Button Race");

 br.setVisible(true);

 }

}

RacerThread.java

package lqtraining;

public class RacerThread extends Thread {

 private ButtonRace br;

 private int racerID;

 public RacerThread(ButtonRace br, int racerID) {

 this.br = br;

 this.racerID = racerID;

 }

 public void run() {

 for(int i = 0; i < 20; i++) {

 int sleepTime = (int)(Math.random()*2000);

 try {sleep(sleepTime);}

 catch(InterruptedException ie){}

 br.moveRacer(racerID);

 }

 }

}

_1131622327.doc
[image: image1.png]The Great Button Race =1olx]
BEA

181

Microsoft

Oracle

