XML Information Retrieval (Part I)

Dr. Jean-Claude Franchitti

New York University
Computer Science Department
Courant Institute of Mathematical Sciences

Agenda

- Summary of Previous Session
- Applications of XML to Database Technology
 - XML Query Languages
 - XPath
 - XML Queries
- XQuery: A Query Language for XML
- XML Query Engines
- Assignment 5a+5b+5c (due in two weeks)

Summary of Previous Session

- XML/XSL and JSP/JavaBeans Rendering Technology
- Internationalization Issues
- Web Content Accessibility Guidelines (WCAG)
- Assignment 4a+4b (due next week)
XML-Based Retrieval Development

- XML Software Development Methodology
 - Language + Stepwise Process + Tools
 - Rational Unified Process (RUP) vs. “XML Unified Process"
- XML Application Development Infrastructure
 - Metadata Management (e.g., XMI)
 - XML Query Engine (3rd party software)
 - XML Tools (e.g., XML Editors)
- XML Applications Involved in the Rendering Phase:
 - Application(s) of XML
 - XML-based applications/services (markup language mediators)
 - MOM, POP, Persistence service
 - Application Infrastructure Frameworks

XML Data Retrieval Patterns

- XML Data Retrieval Operations
 - Access
 - Query
 - Manipulate
- Multiple XML Data Sources Integration
- XML Message Filtering
- DBMS Data Views
- Database System Interfacing

Part I

Applications of XML to Database Technology
Towards XML Application Services

- Processing
 - DOM Extensions
 - Binding Extensions
 - Component Frameworks (reusable component models)
 - Model-Based Automation (MDA)
- Rendering
 - DOM 2.1.0, SAX 2.0, JAXP 1.1 & TraX, XSL-FO 1.0
 - Component Frameworks
- Querying
 - XQuery 1.0, XSLT 1.1/2.0, XPath 1.0/2.0
 - Security (signatures encryption/decryption, etc.)
 - Etc.

Retrieval Software Development

- Languages (XML-QL, YaTL, XQL, etc.)
 - Data Model + Operations + Syntax
- Process (“XUP”)
- Frameworks
 - Custom Engine
 - e.g., XQEngine
 - Translation to SQL
 - e.g., DB2XML, Oracle’s XML IF
 - Translation to OQL
- XML Query Infrastructure
 - XPath Processors: Saxon 6.1, Xalan-J 2.1.0
 - XQuery Processors
 - SQLX

XML Query History

- SGML Query Facilities
- Ad-hoc Approach to Query Languages
- 02/98: XQL Proposal
- 08/98: XML-QL Submission
- 12/98: W3C QL’98 Workshop
 - Candidate Requirements for XML Query
 - Database Desiderata for an XML Query Language
- 11/99: XPath Recommendation
W3C XML Query WG

- 07/99: WG Proposal
- 09/99: WG Official Inception

Today:
- 30 W3C Member Companies
- 11 Meetings, 60+ Telcons
- Heartbeat every Three Months
- Proposed Recommendation(s)

Goals:
- XML Query Data Model for XML Documents
- Query Operators for XML Query Data Model
- Query Language Based on XML Query Operators

W3C’s Related Standards

- XML Query Specifications:
 - XML Query Requirements (02/16/01 - orig. 01/00)
 - XML Query Use Cases (06/08/01 - orig. 08/00)
 - XQueries 1.0 and XPath 2.0 Data Model (06/07/01 - orig. 05/00)
 - XQueries 1.0 Formal Semantics (06/07/01 - orig. 12/00)
 - XQueries 1.0: An XML Query Language (06/07/01)
 - XML Syntax for XQueries 1.0 (XQueryX) (06/07/01)

- XPath 2.0 Specifications
 - XPath Requirements Version 2.0 (02/15/01)
 - XQueries 1.0 and XPath 2.0 Data Model (06/07/01)

Related XML Technologies

- XPath
- XSL
- XPointer
- XML Schema
- XML Infoset
- WAI
- Internationalization
- IETF DASL
 - Distributed Authoring Searching and Locating
Properties of RDBMS Queries

- Pattern + Filter + Construction clause
- Construction clause may have ordering subclauses
- Queries may perform joins across multiple input sets
- Queries may generate intermediate variables or path expressions

Mapping XML to a RDBMS

- SQL-like queries that return XML documents
 - e.g., Microsoft IIS + SQL Server
 - e.g., Oracle Database Server
- Broad spectrum of possible mappings
 - Hierarchical v.s. limited RDBMS tree structure

JDBC Refresher

- See section 6.2 of XML and Java textbook
 - Importing JDBC Package
 - Loading a JDBC Driver
 - Connecting to a Database
 - Submitting a Query
XML Embedded in SQL (SQLX)

- SQL Embedded in XML
- See Section 6.3 of XML and Java textbook
- Front-end to RDBMS that provides XML-based Input/Output
- Translates XML query into sequence of JDBC calls, and converts the result to a DOM structure which is returned

Part II

XML Query

XML Query Requirements (Part I)

- General:
 - Declarative Language
 - Readable XML Syntax
 - Protocol Independence
 - Standard Error Conditions
 - Support for Future Updates
- Data Model
 - Based on XML Infosets
 - Namespace Aware
 - Support for XML Schema Data Types
 - Support Inter/Intra Document References
XML Query Requirements (Part II)

- Query Functionality:
 - Operators on All Data Types
 - Text Operators Across Element Boundaries
 - Hierarchies and Sequences
 - Combination of Data from Various Locations
 - Aggregation and Sorting
 - Combination of Operators (Queries as Operands)
 - Support NULL values
 - Preservation of Structure/Identity
 - Operations on Names/Schemas
 - Extensibility & Closure

XML Query Use Cases

- Approach
 - Description, DTD/Schema, Input, Queries, Results
- Existing Use Cases
 - XMP (examples)
 - TREE (queries that preserve hierarchy)
 - SEQ (queries based on sequence)
 - R (relational data access)
 - TEXT (text search)
 - NS (namespace-based queries)
 - PARTS (recursive parts queries)
 - REF (queries based on references)

XML Query Data Model

- Information Presented to a Query Processor
- Augmented Infoset:
 - XML Schema Data Types (PSVI)
 - Document Collections
 - References
 - Node-Labeled Tree Constructor Model with Node Identity
 - Infoset Mapping to Query Data Model is Defined as Part of the Specification
XML Query Data Model

- Nodes
 - Node = DocNode | ElemNode | AttrNode | ValueNode | NSNode | PINode | CommentNode | InfoItemNode
- XML Schema Primitive Types
 - string, boolean, ID, IDREF, decimal, etc.
- Collections
 - list [T], set {T}, bag [{T}], disjoint/union (T1 | T2), tuple (T1, …, Tn)
- References
 - ref(T)

XML Query Algebra

- Defines Static and Dynamic Semantics
- Static Semantics are Type Inference Rules
 - Relate Algebra Expressions to Types
- Dynamic Semantics are Value Inference Rules
 - Relate Algebra Expressions to Values

Issues:
- Algebra Type System Alignment with XML Schema
- Operators on Schema Simple Types not Defined
- Lexical Representation of Schema Simple Types not Defined

Constructors

- Construct Values in XML Query Data Model
 - attrNode : (Ref(QNameValue), Ref(ValueNode)) -> AttrNode
 - ValueNode = QNameValue | StringValue | DecimalValue | ...
 - QNameValue : (uriReference | null, string, Ref(Def_QName)) -> QNameValue
 - DecimalValue : (decimal, Ref(Def_decimal)) -> DecimalValue

 <xsd:attribute name="price" type=xsd:decimal/>
 attrNode(ref(qnameValue(null, "price", Ref(Def_QName))),
 ref(decimalValue(10.50, Ref(Def_decimal))))
Assessors

- Deconstruct Values in XML Query Data Model

name : AttrNode -> Ref(QNameValue)
value : AttrNode -> Ref(ValueNode)
type : AttrNode -> Ref(ElemNode)

```xml
<xsd:attribute name="price" type="xsd:decimal"/>
<part price=10.50/>
```

```java
name(A1) = ref(qnameValue(null, "price"))
value(A1) = ref(decimalValue(10.50, Ref(Def_decimal)))
type(A1) =
```

<!-- data model representation of simple type decimal -->

Part III

XML Query Languages

XQuery

- Functional Language
- Query Represented as an Expression
- Expressions can be Nested without Restriction
- Input/Output of an XQuery are Instances of the XML Query Data Model
- Based on OQL, SQL, XML-QL, XPath
- Readable XML Syntax
XQuery Expressions
- Path Expressions
- Element Constructors
- FLWR Expressions
- Expressions with Operators/Functions
- Conditional Expressions
- Quantified Expressions
- List Constructors
- Expressions to Test/Modify Datatypes

XQuery Path Expressions
- Abbreviated XPath 1.0 Syntax
 - Find figure(s) with caption “Tree Frogs” in second chapter of “zoo.xml”
 - document("zoo.xml")//figure[caption = "Tree Frogs"]
- Extensions
 - Dereference Operator
 - Range Predicate
- Find captions of figures referenced by <figref/> elements in “Frogs” chapter of “zoo.xml”
 - document("zoo.xml")//figref/@refid ->fig/caption

XQuery Element Constructor
- Start/End Tag + Enclosed List of Expressions
 - Generate an element with a computed name that contains nested elements:
 - <$tagname>
 - <description>$d</description>
 - <price>$p</price>
 - </$tagname>
XQuery For Let Where Return (FLWR)

- FOR and LET Clause
 - Generate a List of Tuples that Preserves Doc Order
- WHERE Clause
 - Applies a Predicate to Eliminate Some Tuples
- RETURN Clause
 - Executed on Resulting Tuples -> Ordered Output List
- Syntax:
 FOR var IN expr WHERE expr RETURN expr
 LET var := expr

FLWR Sample Expressions

- List titles of books published by MK in 98
 FOR $b IN document("bib.xml")//book
 WHERE $b/publisher = "Morgan Kaufmann"
 AND $b/year = "1998"
 RETURN $b/title

- List each publisher and its books average price
 FOR $p IN distinct(document("bib.xml")//publisher)
 LET $a := avg(document("bib.xml")
 /book[publisher = $p]/price)

XQuery Operators and Functions

- Infix/Prefix Operators
 - e.g., Infix Operators BEFORE and AFTER
- Parenthesized Expressions
- Arithmetic/Logical Operators
- Collection Operators
 - e.g., UNION, INTERSECT, EXCEPT
- Functions Can Be Defined in XQuery
Sample Operators and Functions

- Find max depth of “partlist.xml”

```xml
NAMESPACE
xsd="http://www.w3.org/2001/XMLSchema-datatypes"

FUNCTION depth(ELEMENT $e) RETURNS xsd:integer {
    IF empty ($e/*) THEN 1
    ELSE max (depth($e/*)) + 1
}
```

```xml
depth(document("partlist.xml"))
```

XQuery Conditional Expressions

```xml
FOR $h IN //holding
RETURN
  <holding>
  $h/title
  IF $h/@type="Journal" THEN $h/editor
  ELSE $h/author
  <holding> SORTBY (title)
```

XQuery Quantified Expressions

- Example 1:
  ```xml
  FOR $b IN //book
  WHERE SOME $p IN $b//para SATISFIES
  contains($p, "sailing")
  AND contains($p, "windsurfing")
  RETURN $b/title
  ```

- Example 2:
  ```xml
  FOR $b IN //book
  WHERE EVERY $p IN $b//para SATISFIES
  contains($p, "sailing")
  RETURN $b/title
  ```
XQuery List Constructors

- List encloses zero or more expressions in square brackets, separated by commas
- List of member variables: [$x, $y, z]
- Empty list: []

XQuery Operators on Data Types

- INSTANCEOF (instance, type)
- CAST
 - Convert value from one datatype to another
- TREAT
 - Causes the query processor to treat an expression as if its datatype were a subtype of its static type

XQuery Outstanding Issues

- Integration with XPath 2.0
- Alignment of XQuery and XML Query Algebra Syntax
- Internationalization
 - e.g., Collation Sequences for Sorting, Strings ops
- XML Query Syntax
- Operators and Functions TBD
Part IV

XML Query Engines

Various Approaches

- **XQEngine**
 - Full-text search engine for XML
 - Java APIs available
 - W3C XQuery Specification Support

- **DB2XML**
 - Standalone tool (with GUI or command line)
 - Servlet to dynamically generate XML-documents
 - DB2XML API

- Oracle XML Developer Kit (XDK)

- Microsoft SQL Server support for XML

Part V

Conclusions
Summary

- Applying XML to Database Technology allows the viewing of database data as an XML document.
- XML Query is based on a well defined Data Model and Algebra
- Various syntaxes are possible for an XML Query Language
- XML Query Engines are infrastructure components that support XML Query

Readings

- Readings
 - XML Development with Java 2: Chapter 10
 - Professional Java XML: Chapters 16, and 17
 - XML and Java: Chapter 6
 - Handouts posted on the course web site
 - Review textbook chapters on XML/Java persistence bindings
- Project Frameworks Setup (ongoing)
 - Howard Katz’s XQEngine
 - Apache’s Web Server, TomCat/JRun, and Cocoon
 - Apache’s Xerces, Xalan, Saxon
 - Antenna House XML Formatter, Apache’s FOP, X-smiles
 - Publishing Systems at http://www.xmlsoftware.com
 - Visibroker 4.5, WebLogic 6.1
 - POSE & KVM (See Session 3 handout)

Assignment

- Assignment #5: (#5c will be discussed next week)
 - #5a: This part of the project focuses on the application data model design/development using XML information retrieval technology. The design/development process should focus initially on identifying the data to be retrieved for resulting subsets of data
 - #5b: Your XML application service should demonstrate the following additional steps: (a) Defining the optimal retrieval approach for each dataset, and (b) Considering query constraints when designing an overall application data model
 - More specific project related information, and extra credit assignments will be provided during the session
Next Session:
XML Information Retrieval (Part II)
XML-Based Frameworks (Part I)

- XML Object Persistence
- Advanced XML-QL/XQL Concepts
- Using the SAX and DOM APIs with a database
- XML Server Pages (XSP)
- Presentation Oriented Publishing (POP) Frameworks
- Client-Side XML POP Frameworks
- Server-Side XML POP Frameworks