Course Description:

This course provides a hands-on comprehensive study of Cloud concepts and capabilities across the various Cloud service models including Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), and Business Process as a Service (BPaaS). The IaaS topics start with a detailed study of the evolution of infrastructure migration approaches from VMWare/Xen/KVM virtualization, to adaptive virtualization, and Cloud Computing / on-demand resources provisioning. Mainstream Cloud infrastructure services and related vendor solutions are also covered in detail. The PaaS topics cover a broad range of Cloud vendor platforms including AWS, Red Hat’s OpenShift, Cloud Foundry, Apache Stratos, Microsoft Azure, Eucalyptus, OpenStack and others as well as a detailed study of related platform services such as storage capabilities that leverage Google Storage, Amazon S3, Amazon Dynamo, or other facilities meant to provide Cloud resources management and monitoring capabilities. The course will focus in particular on mainstream Application Platform as a Service (aPaaS), which is a PaaS offering that leverages container services (e.g., Docker) and microservices architectures aimed at facilitating application development, deployment and execution in the cloud. In addition to encapsulating infrastructure resources, aPaaSs include services such as those for data management (including NoSQL and in-memory data services), BPM and decision-engine services, API Management for hybrid integration, and user interfaces. As an example, Cloud foundation offerings provided on top of modern aPaaS such as IBM’s Bluemix Liberty for Java include a collection of Watson analytics, big data, mobile, security, IoT, integration, DevOps, Blockchain, as well as other functionality. Additional aPaaS platforms of interest include Google App Engine, Microsoft Azure App Service, Oracle aPaaS, Red Hat OpenShift, Salesforce App Cloud, and SAP Hana Cloud Platform (HCP). The SaaS and aPaaS/PaaS topics covered in the course will familiarize students with the use of vendor-maintained applications and processes available on the Cloud on a metered on-demand basis in multi-tenant environments. Through hands-on assignments and projects, students will learn how to configure and program IaaS services. They
will also learn how to develop Cloud-based software applications on top of various Cloud platforms, how to integrate application-level services built on heterogeneous Cloud platforms, and how to leverage SaaS, aPaaS, and BPaaS solutions to build comprehensive end-to-end business solutions on the Cloud.

Topics Covered:

1. **Cloud Computing Overview**
 - Cloud Computing definition and characteristics (elasticity, multi-tenant, on-demand, ubiquitous access, usage metering, self-service, sla-monitoring, etc.)
 - Cloud Computing and SOA
 - Enterprise Cloud drivers and adoption trends
 - Typical Cloud Enterprise workloads
 - Cloud service models/types (public, private, hybrid, and community clouds)
 - Cloud deployment models (IaaS, PaaS, SaaS, BPaaS)
 - Cloud ROI models
 - Cloud reference architectures
 - Cloud standards (OSDIAPIS, etc.)
 - Technology providers vs. Cloud providers vs. Cloud vendors
 - Planning Cloud transformations (suitability assessment, future state definition, financial assessment and platform selection, roadmap definition)

2 & 3. **Infrastructure as a Service (IaaS)**
 - Evolution of infrastructure migration approaches (virtualization-VMWare/Xen/KVM virtualization, adaptive virtualization, Cloud Computing and on-demand resource provisioning)
 - Cloud Infrastructure services (storage, compute, services management, cloud brokers, etc.)
 - IaaS vendor solutions: Amazon EC2, HP, Microsoft, Savvis, Terremark, Right Scale, Rackspace cloud, IBM, Oracle, Verizon
 - IaaS mainstream offerings (assessment offerings, design offerings, build offerings, integrated operations and management offerings, governance offerings)
 - IaaS project: Ongoing programming project (Part I) – Configuration and programming on a combination of public/private provider platforms (e.g., Amazon EC2/Amazon AWS, IBM SmartCloud Enterprise, Windows Azure, Oracle Public Cloud, etc.) to support the overall course project application.

4 & 5. **Platform as a Service (PaaS)**
 - Evolution of computing paradigms and related components (distributed computing, utility computing, Cloud computing, grid computing, etc.)
 - e.g., Spring vs. VMWare vFabric, gemstone vs. VMWare Gemfire, WMWare Hyperic/TC Server/RabbitMQ
- Cloud platform services (monitoring and management, application servers, messaging, data management, development and testing, integration, business intelligence, etc.)
- PaaS vendor solutions: EMC, Google App Engine, HP, IBM, Microsoft Azure, Rackspace, Savvis, Verizon, force.com, VMware vFabric, OpenStack, Eucalyptus, Storage-as-a-Service platforms (Google Storage, ObjectStore S3, Amazon Dynamo, etc.)
- PaaS mainstream offerings: build/extend/migrate/manage Enterprise applications on top of Microsoft Azure, plan/develop/manage Enterprise applications using AWS transformation services
- PaaS project: Ongoing programming project (Part II – Builds on Part I) – Leverage various PaaS vendor platform capabilities to configure and extent pre-packaged software platforms for the course project application.

6 & 7. Software as a Service (SaaS)

- Overview of the Cloud application development lifecycle
- SaaS platform services (application development, application migration, SaaS implementation, business intelligence - Cloud-based/big data/real time analytics)
- SaaS vendor horizontal solutions: ADP, Cisco, SalesForce.com, Microsoft Online Services, SAP, Oracle OnDemand, Tibco, Cordys, Google, Zoho, Taleo, NetSuite, SuccessFactors, Eloqua, Workday
- SaaS vendor vertical solutions: SmartStream, Callidus Software, TriZetto, Fineos, Misys, Merced System, Inc.
- SaaS mainstream offerings: SaaS Enablement (ISV & product-based), vendor-based SaaS offerings (SFDC, Cordys, Oracle), SaaS solution development, SaaS migration, Cloud application usage optimization
- SaaS project: Ongoing programming project (Part III – Builds on Part II) – Leverage various SaaS frameworks to configure / create / extend SaaS components for the course project application).

8 & 9. Business Process as a Service (BPaaS)

- Overview of BPM on the Cloud (i.e., BPaaS vs. managed business services and BPO) and BpaaS sample solutions (e.g., accounts payable, media planning, order management, clinical data management, MRO process, sentiment analysis, production management)
- BPaaS platform services (process modeler, rules engine, process portal, BAM reporting, process administration, process integration, process collaboration, PaaS management, Cloud manager, process workbench, collaboration tools, application builder, etc.)
- BPaaS vendor solutions: IBM, Dell
- BPaaS mainstream offerings: business and technical services design and development
- BPaaS project: Ongoing programming project (Part IV – Builds on Part III) - Leverage BPaaS frameworks to configure / create / extend BPaaS components for the course project application.

10. Cloud Security
• Cloud security challenges
• Cloud security approaches: encryption, tokenization/obfuscation, cloud security alliance standards, cloud security models and related patterns
• Cloud security in mainstream vendor solutions
• Mainstream Cloud security offerings: security assessment, secure Cloud architecture design
• Cloud security project: Ongoing programming project (Part V – Builds on Part IV) - Design a secure Cloud architecture to support the deployment of a secure version of the course project application.

11&12. Enterprise Cloud-Based High Performance Computing (HPC) Applications

• Overview of High Performance Computing (HPC) on Cloud
• Enterprises HPC applications (high-performance grid computing, high-performance big data computing/analytics, high performance reasoning)
• HPC Cloud vendor solutions: compute grids (Windows HPC, Hadoop, Platform Symphony, Gridgain), data grids (Oracle coherence, IBM Object grid, Cassandra, Hbase, Memcached, HPC hardware (GPGPU, SSD, Infiniband, Non blocking switches)
• HPC on Cloud mainstream offerings: reengineering of HPC applications to leverage HPC on Cloud, Hadoop performance tuning, etc.
• HPC projects 6 & 7: Ongoing programming projects (Part VI and VII – Build on Part V) – Design and develop high-performance application components for the course project application.

References:

Cloud industry publications, online textbooks, and research papers on various topics connected to the various sessions.