Session 7– Sub-Topic 1
Discrete Event Simulation in PNSimulator

Dr. Jean-Claude Franchitti

New York University
Computer Science Department
Courant Institute of Mathematical Sciences
Events

- Events are unique and represent an arrival of some new information into the system. For example:
 - Packet arrives from the link layer
 - Timer expires
 - Application generates a message
 - User closes an application
Event Relationships

- Events have a defined position in time in relation to other events
 - **Causal Relationship**
 - One event cannot occur unless another event has already occurred
 - If Event A causes Event B, then A must precede B in time
 - If B, then A
 - **Random**
 - An event depends on nothing other than a probability distribution
 - A customer walks into a store
 - An application generates a request
Delivery of Events

- All events are created as “future” events
- Based on event and perhaps current state, calculate a time at which the event will occur
- Insert event into a time-ordered queue
- Remove events from the head of the queue and deliver event:
 - Advance clock to event time
 - Call event handler method
 - Repeat until no more events on queue
Event Generation

- After delivery of an event, call all random event generator:
 - If any random event is to happen, its generator will return an event and future time
- Event handlers can generate events. These are typically causal events
 - Example
 - your send() method is an event handler for the Event `SendApplicationMessage`
 - *Your send method starts a timer which causes a TimerEvent to be put on queue with future time = now + timeout value*
In PNSimulator, each event is fully handled before any new event handler is called.

This means that all of your handlers are "Threadsafe".

This does not insure that your code can be shared however! That’s your job.

What does this mean?
All context dependent variables must be allocated such that any invocation of a handler L for user N can retrieve context(L,N)

Usually in communications systems L is layer-specific

For example, sequence numbers in TCP are distinct for each socket

So you must keep your Node A variables distinct from your Node B variables