Data Communications & Networks

Session 5 – Main Theme
Wireless and Mobile Networks

Dr. Jean-Claude Franchitti

New York University
Computer Science Department
Courant Institute of Mathematical Sciences

Adapted from course textbook resources
Computer Networking: A Top-Down Approach, 6/E
Copyright 1996-2013
J.F. Kurose and K.W. Ross, All Rights Reserved
1 Session Overview
2 Wireless and Mobile Networks
3 Summary and Conclusion
What is the class about?

- **Course description and syllabus:**
 - http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
 - http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html

- **Textbooks:**
 - James F. Kurose, Keith W. Ross
 - Addison Wesley
Course Overview

- Computer Networks and the Internet
- Application Layer
- Fundamental Data Structures: queues, ring buffers, finite state machines
- Data Encoding and Transmission
- Local Area Networks and Data Link Control
- Wireless Communications
- Packet Switching
- OSI and Internet Protocol Architecture
- Congestion Control and Flow Control Methods
- Internet Protocols (IP, ARP, UDP, TCP)
- Network (packet) Routing Algorithms (OSPF, Distance Vector)
- IP Multicast
- Sockets
Course Approach

- Introduction to Basic Networking Concepts (Network Stack)
- Origins of Naming, Addressing, and Routing (TCP, IP, DNS)
- Physical Communication Layer
- MAC Layer (Ethernet, Bridging)
- Routing Protocols (Link State, Distance Vector)
- Internet Routing (BGP, OSPF, Programmable Routers)
- TCP Basics (Reliable/Unreliable)
- Congestion Control
- QoS, Fair Queuing, and Queuing Theory
- Network Services – Multicast and Unicast
- Extensions to Internet Architecture (NATs, IPv6, Proxies)
- Network Hardware and Software (How to Build Networks, Routers)
- Overlay Networks and Services (How to Implement Network Services)
- Network Firewalls, Network Security, and Enterprise Networks
Background:

- The number of wireless (mobile) phone subscribers now exceeds the number of wired phone subscribers!
- Computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet access
- Two important (but different) challenges
 - Wireless: communication over wireless link
 - Mobility: handling the mobile user who changes point of attachment to network
Wireless and Mobile Networks Session in Brief

- Introduction
- Wireless
 - Wireless Links characteristics – CDMA
 - IEEE 802.11 wireless LANs (“wi-fi”)
 - Cellular Internet Access architecture and standards (e.g., GSM)
- Mobility
 - Principles addressing and routing to mobile users
 - Mobile IP
 - Handling mobility in cellular networks
 - Mobility and higher-layer protocols
- Summary
Icons / Metaphors

- Information
- Common Realization
- Knowledge/Competency Pattern
- Governance
- Alignment
- Solution Approach
Agenda

1. Session Overview
2. Wireless and Mobile Networks
3. Summary and Conclusion
1 Introduction

Wireless
- 2 Wireless links, characteristics
 » CDMA
- 3 IEEE 802.11 wireless LANs ("wi-fi")
- 4 Cellular Internet Access
 » architecture
 » standards (e.g., GSM)

Mobility
- 5 Principles: addressing and routing to mobile users
- 6 Mobile IP
- 7 Handling mobility in cellular networks
- 8 Mobility and higher-layer protocols

9 Summary
Elements of a wireless network

- **network infrastructure**
- **wireless hosts**
 - laptop, PDA, IP phone
 - run applications
 - may be stationary (non-mobile) or mobile
 » wireless does *not* always mean mobility
Elements of a wireless network

- **Network infrastructure**

- **Base station**
 - typically connected to wired network
 - relay - responsible for sending packets between wired network and wireless host(s) in its “area”
 - e.g., cell towers, 802.11 access points
Elements of a wireless network

- **network infrastructure**
 - typically used to connect mobile(s) to base station
 - also used as backbone link
 - multiple access protocol coordinates link access
 - various data rates, transmission distance
Characteristics of selected wireless link standards

Indoor (10-30m):
- 802.11
- 802.11a,g
- 802.11b
- 802.15

Outdoor (50-200m):
- 802.11a,g point-to-point
- 802.16 (WiMAX)
- UMTS/WCDMA-HSPDA, CDMA2000-1xEVDO
- UMTS/WCDMA, CDMA2000
- IS-95, CDMA, GSM

Mid-range outdoor (200m – 4 Km):

Long-range outdoor (5Km – 20 Km):
- 3G cellular enhanced

Data rate (Mbps):
- Indoor: 1, 5-11, 54, 200
- Outdoor: 0.056, 0.384, 5-11, 54, 200
- Mid-range outdoor: 802.11a,g point-to-point, 802.16 (WiMAX)
- Long-range outdoor: 3G cellular enhanced
Elements of a wireless network

- **network infrastructure**

- **infrastructure mode**
 - base station connects mobiles into wired network
 - handoff: mobile changes base station providing connection into wired network
Elements of a wireless network

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves
Wireless network taxonomy

<table>
<thead>
<tr>
<th>Infrastructure (e.g., APs)</th>
<th>single hop</th>
<th>multiple hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>no infrastructure</td>
<td>host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet</td>
<td>host may have to relay through several wireless nodes to connect to larger Internet: mesh net</td>
</tr>
<tr>
<td></td>
<td>no base station, no connection to larger Internet (Bluetooth, ad hoc nets)</td>
<td>no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET</td>
</tr>
</tbody>
</table>
Differences from wired link ….

» **decreased signal strength**: radio signal attenuates as it propagates through matter (path loss)

» **interference from other sources**: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well

» **multipath propagation**: radio signal reflects off objects ground, arriving at destination at slightly different times

…. make communication across (even a point to point) wireless link much more “difficult”
Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR – easier to extract signal from noise (a “good thing”)
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR -> decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest throughput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)
Multiple wireless senders and receivers create additional problems (beyond multiple access):

- **Hidden terminal problem**
 - B, A hear each other
 - B, C hear each other
 - A, C can not hear each other

 means A, C unaware of their interference at B

- **Signal attenuation:**
 - B, A hear each other
 - B, C hear each other
 - A, C can not hear each other interfering at B
Code Division Multiple Access (CDMA)

- used in several wireless broadcast channels (cellular, satellite, etc) standards
- unique “code” assigned to each user; i.e., code set partitioning
- all users share same frequency, but each user has own “chipping” sequence (i.e., code) to encode data
- \(\text{encoded signal} = (\text{original data}) \times (\text{chipping sequence}) \)
- decoding: inner-product of encoded signal and chipping sequence
- allows multiple users to “coexist” and transmit simultaneously with minimal interference (if codes are “orthogonal”)

```markdown
- encoded signal = (original data) X (chipping sequence)
```
CDMA Encode/Decode

sender

data bits

\[d_1 = -1 \]

\[d_0 = 1 \]

code

\[\begin{array}{cc}
\text{slot 1} & \text{slot 0} \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
-1 & -1 \\
-1 & -1 \\
-1 & -1 \\
-1 & -1 \\
\end{array} \]

channel output \[Z_{i,m} = d_i \cdot c_m \]

receiver

data bits

\[d_1 = -1 \]

\[d_0 = 1 \]

code

\[\begin{array}{cc}
\text{slot 1} & \text{slot 0} \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
-1 & -1 \\
-1 & -1 \\
-1 & -1 \\
-1 & -1 \\
\end{array} \]

channel output

\[D_i = \sum_{m=1}^{M} Z_{i,m} \cdot c_m \]

\[M \]

received input

\[\begin{array}{cc}
\text{slot 1} & \text{slot 0} \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
-1 & -1 \\
-1 & -1 \\
-1 & -1 \\
-1 & -1 \\
\end{array} \]
CDMA: two-sender interference

senders

```
data bits
\[ d^1_i = 1 \]
\[ d^1_i = -1 \]
\[ d^2_i = 1 \]
\[ d^2_i = -1 \]
```

```
channel, \( Z^*_i,m \)
\[ Z^1_{i,m} = d^1_i \cdot c^1_m \]
\[ Z^2_{i,m} = d^2_i \cdot c^2_m \]
```

```
receiver 1
```

\[c^1_i = \sum_{m=1}^{M} Z^*_i,m \cdot c^1_m \]

\[d^0_i = 1 \]
\[d^0_i = -1 \]

```
slot 1
received input
```

```
slot 0
received input
```
1 Introduction

Wireless
- 2 Wireless links, characteristics
 » CDMA
- 3 IEEE 802.11 wireless LANs (“wi-fi”)
- 4 cellular Internet access
 » architecture
 » standards (e.g., GSM)

Mobility
- 5 Principles: addressing and routing to mobile users
- 6 Mobile IP
- 7 Handling mobility in cellular networks
- 8 Mobility and higher-layer protocols

9 Summary
IEEE 802.11 Wireless LAN

- **802.11b**
 - 2.4-5 GHz unlicensed spectrum
 - up to 11 Mbps
 - direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

- **802.11a**
 - 5-6 GHz range
 - up to 54 Mbps

- **802.11g**
 - 2.4-5 GHz range
 - up to 54 Mbps

- **802.11n**: multiple antennae
 - 2.4-5 GHz range
 - up to 200 Mbps

- All use CSMA/CA for multiple access
- All have base-station and ad-hoc network versions
802.11 LAN architecture

- Wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka “cell”) in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only
802.11: Channels, association

- **802.11b**: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!

- **host**: must *associate* with an AP
 - scans channels, listening for *beacon frames* containing AP’s name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP’s subnet
802.11: passive/active scanning

Passive Scanning:
1. beacon frames sent from APs
2. association Request frame sent: H1 to selected AP
3. association Response frame sent: H1 to selected AP

Active Scanning:
1. Probe Request frame broadcast from H1
2. Probes response frame sent from APs
3. Association Request frame sent: H1 to selected AP
4. Association Response frame sent: H1 to selected AP
IEEE 802.11: multiple access

- avoid collisions: 2\(^+\) nodes transmitting at same time
- 802.11: CSMA - sense before transmitting
 » don’t collide with ongoing transmission by other node
- 802.11: *no* collision detection!
 » difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 » can’t sense all collisions in any case: hidden terminal, fading
 » goal: *avoid collisions*: CSMA/C(ollision)A(voidance)
IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1. if sense channel idle for **DIFS** then
 transmit entire frame (no CD)

2. if sense channel busy then
 start random backoff time
 timer counts down while channel idle
 transmit when timer expires
 if no ACK, increase random backoff interval,
 repeat 2

802.11 receiver

- if frame received OK
 return ACK after **SIFS** (ACK needed due to hidden terminal problem)
idea: allow sender to “reserve” channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits \textit{small} request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they’re short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!
Collision Avoidance: RTS-CTS exchange

- RTS(A) exchanged between A and AP
- RTS(B) exchanged between AP and B
- Reservation collision
- CTS(A) exchanged to prevent collision
- DATA(A) transmission deferred
- ACK(A) Acknowledgment
802.11 frame: addressing

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>frame control</td>
<td>2</td>
</tr>
<tr>
<td>duration</td>
<td>2</td>
</tr>
<tr>
<td>address 1</td>
<td>6</td>
</tr>
<tr>
<td>address 2</td>
<td>6</td>
</tr>
<tr>
<td>address 3</td>
<td>6</td>
</tr>
<tr>
<td>seq control</td>
<td>2</td>
</tr>
<tr>
<td>address 4</td>
<td>6</td>
</tr>
<tr>
<td>payload</td>
<td>0 - 2312</td>
</tr>
<tr>
<td>CRC</td>
<td>4</td>
</tr>
</tbody>
</table>

Address 1: MAC address of wireless host or AP to receive this frame

Address 2: MAC address of wireless host or AP transmitting this frame

Address 3: MAC address of router interface to which AP is attached

Address 4: used only in ad hoc mode
802.11 frame: addressing

AP MAC addr \(\rightarrow \) H1 MAC addr \(\rightarrow \) R1 MAC addr

802.11 frame

dest. address | source address
R1 MAC addr | H1 MAC addr

802.3 frame

AP MAC addr | H1 MAC addr | R1 MAC addr

address 1 | address 2 | address 3
802.11 Frame: More

A 802.11 frame consists of several fields, each serving a specific purpose in the wireless communication protocol. The frame is divided into several sections, each with a specific role:

- **Duration**: Indicates the reserved transmission time for RTS/CTS frames. It specifies how long a station can transmit before requiring an acknowledgment.
- **Frame Control**: Contains control information about the frame, such as the type of frame (RTS, CTS, ACK, data), the protocol version, and subtypes.
- **Address**: Includes addresses of the sender (From AP) and the receiver (To AP). Address 1 is the control address, and addresses 2 to 4 are protocol addresses.
- **Sequence Control**: Specifies the sequence number and the fragmentation status.
- **Payload**: Contains data to be transmitted, such as information or commands.
- **CRC**: Checksum for error detection.

The fields are structured as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol version</td>
<td>2</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>Type</td>
<td>2</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>Subtype</td>
<td>4</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>To AP</td>
<td>1</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>From AP</td>
<td>1</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>More frag</td>
<td>1</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>Retry</td>
<td>1</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>Power mgt</td>
<td>1</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>More data</td>
<td>1</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>WEP</td>
<td>1</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>Rsvd</td>
<td>1</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>duration</td>
<td>6</td>
<td>Duration of reserved transmission time (RTS/CTS)</td>
</tr>
<tr>
<td>address 1</td>
<td>2</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>address 2</td>
<td>6</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>address 3</td>
<td>6</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>seq control</td>
<td>2</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>address 4</td>
<td>6</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>payload</td>
<td>0 - 2312</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
<tr>
<td>CRC</td>
<td>4</td>
<td>Frame type (RTS, CTS, ACK, data)</td>
</tr>
</tbody>
</table>
802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning (Ch. 5): switch will see frame from H1 and “remember” which switch port can be used to reach H1
Rate Adaptation

- base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

1. SNR decreases, BER increase as node moves away from base station
2. When BER becomes too high, switch to lower transmission rate but with lower BER
802.11: advanced capabilities

Power Management

- node-to-AP: “I am going to sleep until next beacon frame”
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame

- beacon frame: contains list of mobiles with AP-to-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame
802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps

M Master device
S Slave device
P Parked device (inactive)
802.16: WiMAX

- **like 802.11 & cellular:** base station model
 - transmissions to/from base station by hosts with omnidirectional antenna
 - base station-to-base station backhaul with point-to-point antenna

- **unlike 802.11:**
 - range ~ 6 miles ("city rather than coffee shop")
 - ~14 Mbps
802.16: WiMAX: downlink, uplink scheduling

- **transmission frame**
 - down-link subframe: base station to node
 - uplink subframe: node to base station

 ![Diagram of transmission frame]

 - base station tells nodes who will get to receive (DL map) and who will get to send (UL map), and when

- **WiMAX standard provide mechanism for scheduling, but not scheduling algorithm**
1 Introduction

Wireless
- 2 Wireless links, characteristics
 » CDMA
- 3 IEEE 802.11 wireless LANs ("wi-fi")
- 4 Cellular Internet Access
 » architecture
 » standards (e.g., GSM)

Mobility
- 5 Principles: addressing and routing to mobile users
- 6 Mobile IP
- 7 Handling mobility in cellular networks
- 8 Mobility and higher-layer protocols

9 Summary
Components of cellular network architecture

- **cell**
 - covers geographical region
 - *base station* (BS) analogous to 802.11 AP
 - *mobile users* attach to network through BS
 - *air-interface*: physical and link layer protocol between mobile and BS

- **MSC**
 - connects cells to wide area net
 - manages call setup (more later!)
 - handles mobility (more later!)

- Public telephone network, and Internet
- Wired network

- Mobile Switching Center
Two techniques for sharing mobile-to-BS radio spectrum

- **combined FDMA/TDMA:** divide spectrum in frequency channels, divide each channel into time slots

- **CDMA:** code division multiple access
2G systems: voice channels

- IS-136 TDMA: combined FDMA/TDMA (north america)
- GSM (global system for mobile communications): combined FDMA/TDMA
 » most widely deployed
- IS-95 CDMA: code division multiple access
2.5 G systems: voice and data channels

- for those who can’t wait for 3G service: 2G extensions
- general packet radio service (GPRS)
 » evolved from GSM
 » data sent on multiple channels (if available)
- enhanced data rates for global evolution (EDGE)
 » also evolved from GSM, using enhanced modulation
 » data rates up to 384K
- CDMA-2000 (phase 1)
 » data rates up to 144K
 » evolved from IS-95
3G systems: voice/data

- Universal Mobile Telecommunications Service (UMTS)
- CDMA-2000: CDMA in TDMA slots
 - data service: 1xEvolution Data Optimized (1xEVDO) up to 14 Mbps

….. more (and more interesting) cellular topics due to mobility (stay tuned for details)
2G (voice) network architecture

Legend:
- Base transceiver station (BTS)
- Base station controller (BSC)
- Mobile Switching Center (MSC)
- Mobile subscribers

Base station system (BSS)
- BTS
- BSC

MSC

Public telephone network

Gateway MSC
2.5G (voice+data) network architecture

Key insight: new cellular data network operates in parallel (except at edge) with existing cellular voice network

- voice network unchanged in core
- data network operates in parallel

<table>
<thead>
<tr>
<th>BSC</th>
<th>MSC</th>
<th>SGSN</th>
<th>GGSN</th>
<th>Public telephone network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>G</td>
<td>Gateway MSC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>G</td>
<td>Gateway GPRS Support Node (GGSN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>G</td>
<td>Public Internet</td>
</tr>
</tbody>
</table>

- Serving GPRS Support Node (SGSN)
1 Introduction

Wireless

- 2 Wireless links, characteristics
 - CDMA

- 3 IEEE 802.11 wireless LANs (“wi-fi”)

- 4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- 5 Principles: addressing and routing to mobile users
- 6 Mobile IP
- 7 Handling mobility in cellular networks
- 8 Mobility and higher-layer protocols

9 Summary
What is mobility?

- spectrum of mobility, from the *network* perspective:
 - no mobility
 - mobile wireless user, using same access point
 - mobile user, connecting/disconnecting from network using DHCP.
 - mobile user, passing through multiple access point while maintaining ongoing connections (like cell phone)
 - high mobility
Mobility: Vocabulary

- **home network**: permanent "home" of mobile (e.g., 128.119.40/24)
- **home agent**: entity that will perform mobility functions on behalf of mobile, when mobile is remote
- **Permanent address**: address in home network, *can always* be used to reach mobile (e.g., 128.119.40.186)

Diagram:
- Home network
- Wide area network
- Correspondent
Mobility: more vocabulary

Permanent address: remains constant (e.g., 128.119.40.186)

Care-of-address: address in visited network. (e.g., 79.129.13.2)

visited network: network in which mobile currently resides (e.g., 79.129.13/24)

foreign agent: entity in visited network that performs mobility functions on behalf of mobile.

correspondent: wants to communicate with mobile
How do you contact a mobile friend:

Consider friend frequently changing addresses, how do you find her?

- search all phone books?
- call her parents?
- expect her to let you know where he/she is?

I wonder where Alice moved to?
Mobility: approaches

- *Let routing handle it*: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - routing tables indicate where each mobile located
 - no changes to end-systems

- *Let end-systems handle it:*
 - *indirect routing*: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - *direct routing*: correspondent gets foreign address of mobile, sends directly to mobile
Mobility: approaches

- Let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 » routing tables indicate where each mobile located
 » no changes to end-systems

- let end-systems handle it:
 » indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 » direct routing: correspondent gets foreign address of mobile, sends directly to mobile
Mobility: registration

End result:
- Foreign agent knows about mobile
- Home agent knows location of mobile
Mobility via Indirect Routing

1. Correspondent addresses packets using home address of mobile.
2. Home agent intercepts packets, forwards to foreign agent.
3. Foreign agent receives packets, forwards to mobile.
4. Mobile replies directly to correspondent.
Indirect Routing: comments

- Mobile uses two addresses:
 - **permanent address**: used by correspondent (hence mobile location is *transparent* to correspondent)
 - **care-of-address**: used by home agent to forward datagrams to mobile

- Foreign agent functions may be done by mobile itself

- **triangle routing**: correspondent-home-network-mobile
 - inefficient when correspondent, mobile are in same network
Indirect Routing: moving between networks

- Suppose mobile user moves to another network
 - Registers with new foreign agent
 - New foreign agent registers with home agent
 - Home agent update care-of-address for mobile
 - Packets continue to be forwarded to mobile (but with new care-of-address)

- Mobility, changing foreign networks transparent: *on going connections can be maintained!*
Mobility via Direct Routing

1. Correspondent requests, receives foreign address of mobile.
2. Correspondent forwards to foreign agent.
3. Foreign agent receives packets, forwards to mobile.
4. Mobile replies directly to correspondent.
Mobility via Direct Routing: comments

- overcome triangle routing problem
- non-transparent to correspondent: correspondent must get care-of-address from home agent
 - what if mobile changes visited network?
Accommodating mobility with direct routing

- anchor foreign agent: FA in first visited network
- data always routed first to anchor FA
- when mobile moves: new FA arranges to have data forwarded from old FA (chaining)
Session Outline

1 Introduction

Wireless
- 2 Wireless links, characteristics
 » CDMA
- 3 IEEE 802.11 wireless LANs (“wi-fi”)
- 4 Cellular Internet Access
 » architecture
 » standards (e.g., GSM)

Mobility
- 5 Principles: addressing and routing to mobile users
- 6 Mobile IP
- 7 Handling mobility in cellular networks
- 8 Mobility and higher-layer protocols

9 Summary
- RFC 3344
- has many features we’ve seen:
 » home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-a-packet)
- three components to standard:
 » indirect routing of datagrams
 » agent discovery
 » registration with home agent
Mobile IP: indirect routing

Permanent address: 128.119.40.186

Care-of address: 79.129.13.2

Packet sent by correspondent

dest: 128.119.40.186

Foreign-agent-to-mobile packet

dest: 128.119.40.186

Packet sent by home agent to foreign agent: a packet within a packet

dest: 79.129.13.2

dest: 128.119.40.186
agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (16, 9)

- R bit: registration required
- H,F bits: home and/or foreign agent

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type = 9</td>
<td>router address</td>
</tr>
<tr>
<td>Code = 0</td>
<td>standard ICMP fields</td>
</tr>
<tr>
<td>Checksum</td>
<td></td>
</tr>
<tr>
<td>Type = 16</td>
<td>sequence #</td>
</tr>
<tr>
<td>Length</td>
<td>mobility agent advertisement extension</td>
</tr>
<tr>
<td>Registration lifetime</td>
<td>RBHFMGV bits</td>
</tr>
<tr>
<td></td>
<td>reserved</td>
</tr>
</tbody>
</table>

0 or more care-of-addresses
Mobile IP: registration example

visited network: 79.129.13/24
home agent
HA: 128.119.40.7
foreign agent
COA: 79.129.13.2
ICMP agent adv.
COA: 79.129.13.2
registration req.
COA: 79.129.13.2
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 9999
identification: 714
encapsulation format
registration reply
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 9999
identification: 714
encapsulation format
registration reply
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 4999
identification: 714
Mobile agent
MA: 128.119.40.186
Components of cellular network architecture

recall:

![Diagram of cellular network architecture](image)

different cellular networks, operated by different providers
Handling mobility in cellular networks

- **home network**: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon)
 - **home location register (HLR)**: database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)

- **visited network**: network in which mobile currently resides
 - **visitor location register (VLR)**: database with entry for each user currently in network
 - could be home network
GSM: indirect routing to mobile

1. Call routed to home network
2. Home MSC consults HLR, gets roaming number of mobile in visited network
3. Home MSC sets up 2nd leg of call to MSC in visited network
4. MSC in visited network completes call through base station to mobile

Home network

Mobile Switching Center

Public switched telephone network

visited network

Mobile user
GSM: handoff with common MSC

- Handoff goal: route call via new base station (without interruption)

- reasons for handoff:
 - stronger signal to/from new BSS (continuing connectivity, less battery drain)
 - load balance: free up channel in current BSS
 - GSM doesn’t mandate why to perform handoff (policy), only how (mechanism)

- handoff initiated by old BSS
GSM: handoff with common MSC

1. old BSS informs MSC of impending handoff, provides list of 1+ new BSSs
2. MSC sets up path (allocates resources) to new BSS
3. new BSS allocates radio channel for use by mobile
4. new BSS signals MSC, old BSS: ready
5. old BSS tells mobile: perform handoff to new BSS
6. mobile, new BSS signal to activate new channel
7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
8. MSC-old-BSS resources released
GSM: handoff between MSCs

- **anchor MSC**: first MSC visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- IS-41 allows optional path minimization step to shorten multi-MSC chain

(a) before handoff

- **MSC**: Mobile Switching Center
- **PSTN**: Public Switched Telephone Network
- **Home MSC**: MSC of the user's home network
- **correspondent**: The user's correspondent in the PSTN

![Diagram showing handoff between MSCs](image-url)
GSM: handoff between MSCs

- **anchor MSC**: first MSC visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- IS-41 allows optional path minimization step to shorten multi-MSC chain

GSM: handoff between MSCs

- **anchor MSC**: first MSC visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- IS-41 allows optional path minimization step to shorten multi-MSC chain
Mobility: GSM versus Mobile IP

<table>
<thead>
<tr>
<th>GSM element</th>
<th>Comment on GSM element</th>
<th>Mobile IP element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home system</td>
<td>Network to which mobile user’s permanent phone number belongs</td>
<td>Home network</td>
</tr>
<tr>
<td>Gateway Mobile Switching Center, or “home MSC”. Home Location Register (HLR)</td>
<td>Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information</td>
<td>Home agent</td>
</tr>
<tr>
<td>Visited System</td>
<td>Network other than home system where mobile user is currently residing</td>
<td>Visited network</td>
</tr>
<tr>
<td>Visited Mobile services Switching Center. Visitor Location Record (VLR)</td>
<td>Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user</td>
<td>Foreign agent</td>
</tr>
<tr>
<td>Mobile Station Roaming Number (MSRN), or “roaming number”</td>
<td>Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent.</td>
<td>Care-of-address</td>
</tr>
</tbody>
</table>
- logically, impact *should* be minimal …
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- … but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - TCP interprets loss as congestion, will decrease congestion window un-necessarily
 - delay impairments for real-time traffic
 - limited bandwidth of wireless links
1. Session Overview
2. Data Link Control
3. Summary and Conclusion
Summary

Wireless
- wireless links:
 - capacity, distance
 - channel impairments
 - CDMA
- IEEE 802.11 ("wi-fi")
 - CSMA/CA reflects wireless channel characteristics
- cellular access
 - architecture
 - standards (e.g., GSM, CDMA-2000, UMTS)

Mobility
- principles: addressing, routing to mobile users
 - home, visited networks
 - direct, indirect routing
 - care-of-addresses
- case studies
 - mobile IP
 - mobility in GSM
- impact on higher-layer protocols
Assignments & Readings

- Readings
 - Chapter 6
- Assignment #5
Next Session: Reliable Data Transfer