Data Communications & Networks

Session 7 – Main Theme
Networks: Part I
Circuit Switching, Packet Switching, The Network Layer

Dr. Jean-Claude Franchitti

New York University
Computer Science Department
Courant Institute of Mathematical Sciences

Adapted from course textbook resources
Computer Networking: A Top-Down Approach, 6/E
Copyright 1996-2013
J.F. Kurose and K.W. Ross, All Rights Reserved
What is the class about?

Course description and syllabus:

» http://www.nyu.edu/classes/jcf/csci-ga.2262-001/

» http://cs.nyu.edu/courses/fall15/CSCI-GA.2262-001/index.html

Textbooks:

 James F. Kurose, Keith W. Ross
 Addison Wesley
Course Overview

- Computer Networks and the Internet
- Application Layer
- Fundamental Data Structures: queues, ring buffers, finite state machines
- Data Encoding and Transmission
- Local Area Networks and Data Link Control
- Wireless Communications
- Packet Switching
- OSI and Internet Protocol Architecture
- Congestion Control and Flow Control Methods
- Internet Protocols (IP, ARP, UDP, TCP)
- Network (packet) Routing Algorithms (OSPF, Distance Vector)
- IP Multicast
- Sockets
Course Approach

- Introduction to Basic Networking Concepts (Network Stack)
- Origins of Naming, Addressing, and Routing (TCP, IP, DNS)
- Physical Communication Layer
- MAC Layer (Ethernet, Bridging)
- Routing Protocols (Link State, Distance Vector)
- Internet Routing (BGP, OSPF, Programmable Routers)
- TCP Basics (Reliable/Unreliable)
- Congestion Control
- QoS, Fair Queuing, and Queuing Theory
- Network Services – Multicast and Unicast
- Extensions to Internet Architecture (NATs, IPv6, Proxies)
- Network Hardware and Software (How to Build Networks, Routers)
- Overlay Networks and Services (How to Implement Network Services)
- Network Firewalls, Network Security, and Enterprise Networks
Networks Part 1 Session in Brief

- Understand principles behind network layer services:
 - Network layer service models
 - Forwarding versus routing
 - How a router works
- Instantiation, implementation in the Internet
- Conclusion
Agenda

1. Session Overview
2. Networks Part 1
3. Summary and Conclusion
Networks Part 1 Agenda

- **Introduction**
- Virtual circuit and datagram networks
- What’s inside a router
- **IP: Internet Protocol**
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
Switching Networks

- Long distance transmission is typically done over a network of switched nodes
- Nodes not concerned with content of data
- End devices are stations
 - Computer, terminal, phone, etc.
- A collection of nodes and connections is a communications network
- Data routed by being switched from node to node
Two different switching technologies
- Circuit switching
- Packet switching
Circuit Switching

- Dedicated communication path between two stations (during conversation)
- Three phases
 - Establish
 - Transfer
 - Disconnect
- Must have switching capacity and channel capacity to establish connection
- Must have intelligence to work out routing
Circuit Switching - Issues

- Circuit switching is inefficient (designed for voice)
 - Resources dedicated to a particular call
 - Much of the time a data connection is idle
 - Data rate is fixed
 - Both ends must operate at the same rate
- Set up (connection) takes time
- Once connected, transfer is transparent
Packet Switching – Basic Operation

- Data transmitted in small packets
 - Typically 1000 octets
 - Longer messages split into series of packets
 - Each packet contains a portion of user data plus some control info

- Control info
 - Routing (addressing) info

- Packets are received, stored briefly (buffered) and passed on to the next node
 - Store and forward
Use of Packets

Application data

control information (packet header)

Packet-Switching Network

packet
Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it
Two Key Network-Layer Functions

- **forwarding**: move packets from router’s input to appropriate router output

- **routing**: determine route taken by packets from source to dest.

 » **routing algorithms**

analogy:

- **routing**: process of planning trip from source to dest

- **forwarding**: process of getting through single interchange
Interplay between routing and forwarding

Routing algorithm

<table>
<thead>
<tr>
<th>Header value</th>
<th>Output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet’s header
Connection setup

- 3rd important function in some network architectures:
 - ATM, frame relay, X.25
- Before datagrams flow, two end hosts and intervening routers establish virtual connection:
 - Routers get involved
- Network vs transport layer connection service:
 - Network: between two hosts (may also involve intervening routers in case of VCs)
 - Transport: between two processes
Q: What service model for “channel” transporting datagrams from sender to receiver?

Example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

Example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing
Network layer service models

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Service Model</th>
<th>Guarantees?</th>
<th>Congestion feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bandwidth</td>
<td>Loss</td>
</tr>
<tr>
<td>Internet</td>
<td>best effort</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>ATM</td>
<td>CBR</td>
<td>constant rate</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>VBR</td>
<td>guaranteed rate</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>ABR</td>
<td>guaranteed minimum</td>
<td>no</td>
</tr>
<tr>
<td>ATM</td>
<td>UBR</td>
<td>none</td>
<td>no</td>
</tr>
</tbody>
</table>
Networks Part 1 Agenda

- Introduction
- **Virtual circuit and datagram networks**
- What’s inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
Network layer connection and connection-less service

- datagram network provides network-layer connectionless service
- VC network provides network-layer connection service
- analogous to the transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core
Virtual circuits

“source-to-dest path behaves much like telephone circuit”
 » performance-wise
 » network actions along source-to-dest path

- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
 every router on source-dest path maintains “state” for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)
a VC consists of:

1. path from source to destination
2. VC numbers, one number for each link along path
3. entries in forwarding tables in routers along path

- packet belonging to VC carries VC number (rather than dest address)
- VC number can be changed on each link.
 - New VC number comes from forwarding table
Forwarding table in northwest router:

<table>
<thead>
<tr>
<th>Incoming interface</th>
<th>Incoming VC #</th>
<th>Outgoing interface</th>
<th>Outgoing VC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Routers maintain connection state information!
- used to setup, maintain, and teardown VC
- used in ATM, frame-relay, X.25
- not used in today’s Internet
- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of “connection”
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths

1. Send data
2. Receive data
<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010000 00000000 through 11001000 00011011 00010111 11111111</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 00000000 through 11001000 00011011 00011000 11111111</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011001 00000000 through 11001000 00011011 00011111 11111111</td>
<td>2</td>
</tr>
</tbody>
</table>

otherwise 3

4 billion possible entries
Longest prefix matching

<table>
<thead>
<tr>
<th>Prefix Match</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples

DA: 11001000 00010111 00010110 10100001

Which interface?

DA: 11001000 00010111 00011000 10101010

Which interface?
Internet (datagram)

- data exchange among computers
 - “elastic” service, no strict timing req.
- “smart” end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at “edge”
- many link types
 - different characteristics
 - uniform service difficult

ATM (VC)

- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- “dumb” end systems
 - telephones
 - complexity inside network
Networks Part 1 Agenda

- Introduction
- Virtual circuit and datagram networks
- What’s inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
Two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- for outgoing datagrams from incoming link
Decentralized switching:
- given datagram dest., lookup output port using forwarding table in input port memory
- goal: complete input port processing at ‘line speed’
- queuing: if datagrams arrive faster than forwarding rate into switch fabric
Three types of switching fabrics

- Memory
- Bus
- Crossbar
First generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system’s memory
- speed limited by memory bandwidth (2 bus crossings per datagram)
Switching Via a Bus

- datagram from input port memory to output port memory via a shared bus
- **bus contention**: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers
Switching Via An Interconnection Network

- overcome bus bandwidth limitations
- Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network
Output Ports

- **Buffering** required when datagrams arrive from fabric faster than the transmission rate
- **Scheduling discipline** chooses among queued datagrams for transmission
Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!
How much buffering?

- RFC 3439 rule of thumb: average buffering equal to “typical” RTT (say 250 msec) times link capacity C
 - e.g., $C = 10$ Gps link: 2.5 Gbit buffer
- Recent recommendation: with N flows, buffering equal to $\frac{\text{RTT} \cdot C}{\sqrt{N}}$
Input Port Queuing

- Fabric slower than input ports combined -> queueing may occur at input queues
- **Head-of-the-Line (HOL) blocking:** queued datagram at front of queue prevents others in queue from moving forward
- *queueing delay and loss due to input buffer overflow!*

![Diagram showing input port queuing and HOL blocking](image)
Networks Part 1 Agenda

- Introduction
- Virtual circuit and datagram networks
- What’s inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
Host, router network layer functions:

Transport layer: TCP, UDP
- Routing protocols
 - path selection
 - RIP, OSPF, BGP
- IP protocol
 - addressing conventions
 - datagram format
 - packet handling conventions
- ICMP protocol
 - error reporting
 - router “signaling”

Link layer

physical layer
Networks Part 1 Agenda

- Introduction
- Virtual circuit and datagram networks
- What’s inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
IP datagram format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>IP protocol version number</td>
</tr>
<tr>
<td>header length</td>
<td>bytes</td>
</tr>
<tr>
<td>“type” of data</td>
<td>32 bits</td>
</tr>
<tr>
<td>max number remaining hops</td>
<td>(decremented at each router)</td>
</tr>
<tr>
<td>upper layer protocol</td>
<td>to deliver payload to</td>
</tr>
<tr>
<td>32 bit source IP address</td>
<td></td>
</tr>
<tr>
<td>32 bit destination IP address</td>
<td></td>
</tr>
<tr>
<td>Options (if any)</td>
<td>E.g. timestamp, record route taken, specify list of routers to visit.</td>
</tr>
<tr>
<td>data</td>
<td>(variable length, typically a TCP or UDP segment)</td>
</tr>
</tbody>
</table>

How much overhead with TCP?
- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead
IP Fragmentation & Reassembly

- network links have MTU (max.transfer size) - largest possible link-level frame.
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments
Example
- 4000 byte datagram
- MTU = 1500 bytes
 1480 bytes in data field

One large datagram becomes several smaller datagrams

offset = 1480/8
Networks Part 1 Agenda

- Introduction
- Virtual circuit and datagram networks
- What’s inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
IP Addressing: introduction

- **IP address**: 32-bit identifier for host, router *interface*
- **interface**: connection between host/router and physical link
 - router’s typically have multiple interfaces
 - host typically has one interface
 - IP addresses associated with each interface

```
223.1.1.1 = 11011111 00000001 00000001 00000001
223 1 1 1 1
```
Subnets

- **IP address:**
 - subnet part (high order bits)
 - host part (low order bits)

- **What’s a subnet?**
 - device interfaces with same subnet part of IP address
 - can physically reach each other without intervening router
Subnets

Recipe

- To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet.

Subnet mask: /24
How many?
CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: `a.b.c.d/x`, where `x` is # bits in subnet portion of address
Q: How does a *host* get IP address?

- **hard-coded by system admin in a file**
 - *Windows:* control-panel->network->configuration->tcp/ip->properties
 - *UNIX:* /etc/rc.config

- **DHCP:** *Dynamic Host Configuration Protocol:* dynamically get address from as server
 - “plug-and-play”
Goal: allow host to *dynamically* obtain its IP address from network server when it joins network
- Can renew its lease on address in use
- Allows reuse of addresses (only hold address while connected an “on”)
- Support for mobile users who want to join network (more shortly)

DHCP overview:
- host broadcasts “DHCP discover” msg [optional]
- DHCP server responds with “DHCP offer” msg [optional]
- host requests IP address: “DHCP request” msg
- DHCP server sends address: “DHCP ack” msg
DHCP client-server scenario

DHCP server

arriving DHCP client needs address in this network
DHCP client-server scenario

DHCP server: 223.1.2.5

DHCP discover

src: 0.0.0.0, 68
dest.: 255.255.255.255, 67
yiaddr: 0.0.0.0
transaction ID: 654

DHCP offer

src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request

src: 0.0.0.0, 68
dest.: 255.255.255.255, 67
yiaddr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs
DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)
DHCP: example

- Connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demux’ed to IP demux’ed, UDP demux’ed to DHCP
- DCP server formulates DHCP ACK containing client’s IP address, IP address of first-hop router for client, name & IP address of DNS server.

- encapsulation of DHCP server, frame forwarded to client, demux’ing up to DHCP at client.

- client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router.
DHCP: wireshark output
(home LAN)

Message type: **Boot Request (1)**
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: **0x6b3a11b7**
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 0.0.0.0 (0.0.0.0)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: *(t=53,l=1)* DHCP Message Type = DHCP Request
Option: *(61)* Client identifier
 Length: 7; Value: 010016D323688A;
 Hardware type: Ethernet
 Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Option: *(t=50,l=4)* Requested IP Address = 192.168.1.101
Option: *(t=12,l=5)* Host Name = "nomad"
**Option: (55)* Parameter Request List
 Length: 11; Value: 010F03062C2E2F1F92B
 1 = Subnet Mask; 15 = Domain Name
 3 = Router; 6 = Domain Name Server
 44 = NetBIOS over TCP/IP Name Server

Message type: **Boot Reply (2)**
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: **0x6b3a11b7**
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: **192.168.1.101** (192.168.1.101)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: **192.168.1.1** (192.168.1.1)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: *(t=53,l=1)* DHCP Message Type = DHCP ACK
Option: *(t=54,l=4)* Server Identifier = 192.168.1.1
Option: *(t=1,l=4)* Subnet Mask = 255.255.255.0
Option: *(t=3,l=4)* Router = 192.168.1.1
Option: *(6)* Domain Name Server
 Length: 12; Value: 445747E2445749F24574092;
 IP Address: 68.87.71.226;
 IP Address: 68.87.73.242;
 IP Address: 68.87.64.146
Option: *(t=15,l=20)* Domain Name = "hsd1.ma.comcast.net."
Q: How does *network* get subnet part of IP addr?

A: gets allocated portion of its provider ISP’s address space

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>
Hierarchical addressing allows efficient advertisement of routing information:

- 200.23.16.0/23
- 200.23.18.0/23
- 200.23.20.0/23
- 200.23.30.0/23

Send me anything with addresses beginning 200.23.16.0/20

Send me anything with addresses beginning 199.31.0.0/16
Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

Organization 0
- 200.23.16.0/23

Organization 2
- 200.23.20.0/23

Organization 7
- 200.23.30.0/23

Organization 1
- 200.23.18.0/23

Fly-By-Night-ISP

"Send me anything with addresses beginning 200.23.16.0/20"

ISPs-R-Us

"Send me anything with addresses beginning 199.31.0.0/16 or 200.23.18.0/23"

Internet
Q: How does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned Names and Numbers
 » allocates addresses
 » manages DNS
 » assigns domain names, resolves disputes
NAT: Network Address Translation

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)
Motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus).
Implementation: NAT router must:

» **outgoing datagrams: replace** (source IP address, port #)
of every outgoing datagram to (NAT IP address, new port #)
 . . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr.

» **remember (in NAT translation table)** every (source IP address, port #) to (NAT IP address, new port #) translation pair

» **incoming datagrams: replace** (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table
NAT: Network Address Translation

1: Host 10.0.0.1 sends datagram to 128.119.40.186, 80

2: NAT router changes datagram source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table

2

3: Reply arrives: dest. address: 138.76.29.7, 5001

3

4: NAT router changes datagram dest addr from 138.76.29.7, 5001 to 10.0.0.1, 3345

4

NAT translation table

<table>
<thead>
<tr>
<th>WAN side addr</th>
<th>LAN side addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>138.76.29.7, 5001</td>
<td>10.0.0.1, 3345</td>
</tr>
<tr>
<td>……</td>
<td>……</td>
</tr>
</tbody>
</table>
16-bit port-number field:
- 60,000 simultaneous connections with a single LAN-side address!

NAT is controversial:
- Routers should only process up to layer 3
- Violates end-to-end argument
 - NAT possibility must be taken into account by app designers, eg, P2P applications
- Address shortage should instead be solved by IPv6
client wants to connect to server with address 10.0.0.1
 » server address 10.0.0.1 local to LAN (client can’t use it as destination addr)
 » only one externally visible NATted address: 138.76.29.7

solution 1: statically configure NAT to forward incoming connection requests at given port to server
 » e.g., (123.76.29.7, port 2500) always forwarded to 10.0.0.1 port 25000
solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATted host to:
- learn public IP address (138.76.29.7)
- add/remove port mappings (with lease times)

i.e., automate static NAT port map configuration
solution 3: relaying (used in Skype)
 » NATed client establishes connection to relay
 » External client connects to relay
 » relay bridges packets between to connections
Networks Part 1 Agenda

- Introduction
- Virtual circuit and datagram networks
- What’s inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate network-level information
 - error reporting:
 - unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer “above” IP:
 - ICMP msgs carried in IP datagrams
- **ICMP message**: type, code plus first 8 bytes of IP datagram causing error

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>echo reply (ping)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>dest. network unreachable</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>dest host unreachable</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>dest protocol unreachable</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>dest port unreachable</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>dest network unknown</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>dest host unknown</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>source quench (congestion control - not used)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>echo request (ping)</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>route advertisement</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>router discovery</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>TTL expired</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>bad IP header</td>
</tr>
</tbody>
</table>
Traceroute and ICMP

- Source sends series of UDP segments to dest
 - First has TTL =1
 - Second has TTL=2, etc.
 - Unlikely port number
- When nth datagram arrives to nth router:
 - Router discards datagram
 - And sends to source an ICMP message (type 11, code 0)
 - Message includes name of router & IP address
- When ICMP message arrives, source calculates RTT
- Traceroute does this 3 times

Stopping criterion

- UDP segment eventually arrives at destination host
- Destination returns ICMP “host unreachable” packet (type 3, code 3)
- When source gets this ICMP, stops.
Networks Part 1 Agenda

- Introduction
- Virtual circuit and datagram networks
- What’s inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
- **Initial motivation:** 32-bit address space soon to be completely allocated.

- **Additional motivation:**
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:
- fixed-length 40 byte header
- no fragmentation allowed
Priority: identify priority among datagrams in flow

Flow Label: identify datagrams in same “flow.”
(concept of “flow” not well defined).

Next header: identify upper layer protocol for data
Other Changes from IPv4

- **Checksum**: removed entirely to reduce processing time at each hop
- **Options**: allowed, but outside of header, indicated by “Next Header” field
- **ICMPv6**: new version of ICMP
 - additional message types, e.g. “Packet Too Big”
 - multicast group management functions
Not all routers can be upgraded simultaneous
 » no “flag days”
 » How will the network operate with mixed IPv4 and IPv6 routers?

Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers
Tunneling (1/2)

Logical view:

Physical view:
Tunneling (2/2)

Logical view:

Physical view:

Flow: X
Src: A
Dest: F
data

A-to-B: IPv6
B-to-C: IPv6 inside IPv4
E-to-F: IPv6

Flow: X
Src: A
Dest: F
data

IPv6 inside IPv4
Summary

- Introduction
- Virtual circuit and datagram networks
- What’s inside a router
- IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
Assignments & Readings

- Readings
 - Chapter 4
- Assignments #7
Next Session: Networks - Part II