Periodicity detection

Juan Pablo Bello
MPATE-GE 2623 Music Information Retrieval
New York University
Periodicity detection

- Formally, a periodic signal is defined as:

\[x(t) = x(t + T_0), \forall t \]

- Detect the fundamental period/frequency (and phase)
Applications

- Pitch tracking -> pitch-synchronous analysis, transcription

- Beat tracking -> segmentation, beat-synchronous analysis, understanding rhythm
Difficulties

- Quasi-periodicities
- Multiple periodicities associated with f0
- Transient, temporal variations and ambiguous events
- Polyphonies: overlap + harmonicity
Difficulties

- Quasi-periodicities
- Multiple periodicities associated with f0
- Transient, temporal variations and ambiguous events
- Polyphonies: overlap + harmonicity
Polyphonies

(a) C4 and E4 - a third
(b) C4 and G4 - a fifth
(c) C4 and C5 - an octave
Difficulties

- Quasi-periodicities
- Multiple periodicities associated with f0
- Transient, temporal variations and ambiguous events
- Polyphonies: overlap + harmonicity
Architecture

Audio → Break into blocks → Detection function + peak-picking → Integration over time

f_0

time

smoothing
Overview of Methods

- DFT
- Autocorrelation
- Spectral Pattern Matching
- Cepstrum
- Spectral Autocorrelation
- YIN
- Auditory model
DFT

![DFT Diagram]

- Time (secs)
- Frequency (Hz)
- Waveform
- Magnitude (dB)

T_0

f_0
DFT
DFT

Waveform

Time (secs)

Frequency (Hz)

Magnitude (dB)

f_0 and T_0
DFT
Autocorrelation

- Cross-product measures similarity across time

- Cross-correlation of two real-valued signals x and y:

$$ r_{xy}(l) = \frac{1}{N} \sum_{n=0}^{N-1} x(n)y(n+l) \mod N $$

$$ l = 0, 1, 2, \ldots, N - 1 $$

- Unbiased (short-term) Autocorrelation Function (ACF):

$$ r_x(l) = \frac{1}{N-l} \sum_{n=0}^{N-1-l} x(n)x(n+l) $$

$$ l = 0, 1, 2, \cdots, L - 1 $$
Autocorrelation
Autocorrelation

• The short-term ACF can also be computed as:

\[
r_x(l) = \left(\frac{1}{N-l} \right) \text{real}(IFFT(|X|^2))
\]

\[X \rightarrow FFT(x)\]

\[x \text{ zero-padded to next power of 2 after } (N + L) - 1\]
Autocorrelation

This is equivalent to the following correlation:

\[r_x(l) = \frac{1}{K - l} \sum_{k=0}^{K-1} \cos\left(\frac{2\pi lk}{K}\right)|X(k)|^2 \]
Pattern Matching

- Comb filtering is a common strategy
- Any other template that realistically fits the magnitude spectrum
- Templates can be specific to instruments (e.g. inharmonicity for piano analysis).
- Matching strategies vary: correlation, likelihood, distance, etc.
Pattern Matching
Cepstrum

• Treat the log magnitude spectrum as if it were a signal \(\rightarrow \) take its (i)DFT

• Measures rate of change across frequency bands (Bogert et al., 1963)

• Cepstrum \(\rightarrow \) Anagram of Spectrum (same for quefrency, liftering, etc)

• For a real-valued signal is defined as:

\[
 c_x(l) = \text{real} \left(\text{IFFT} \left(\log(\|\text{FFT}(x)\|) \right) \right)
\]
Cepstrum

![Cepstrum Graph](image)
Spectral ACF

- Spectral location -> sensitive to quasi-periodicities

- (Quasi-)Periodic Spectrum, Spectral ACF.

\[
 r_X(l_f) = \frac{1}{N - l_f} \sum_{k=0}^{N-1-l_f} |X(k)||X(k + l_f)|
\]

\[l_f = 0, 1, 2, \cdots , L - 1 \]

- Exploits intervalic information (more stable than locations of partials), while adding shift-invariance.
Spectral ACF
YIN

• Alternative to the ACF that uses the squared difference function (deCheveigne, 02):

\[
d(l) = \sum_{n=0}^{N-1-l} (x(n) - x(n + l))^2
\]

• For (quasi-)periodic signals, this function cancels itself at \(l = 0, l_0 \) and its multiples. Zero-lag bias is avoided by normalizing as:

\[
\hat{d}(l) = \begin{cases}
1 & \text{if } l = 0 \\
\frac{d(l)}{[(1/l) \sum_{u=1}^{l} d(u)]} & \text{otherwise}
\end{cases}
\]
YIN

Time (secs)

Waveform

Lag (secs)

YIN
Auditory model

\[x(n) \]

\[x_c(n) \]

\[z_c(n) \]

\[r_c(n) \]

Summary periodicity function
Auditory model

- Auditory filterbank: gammatone filters (Slaney, 93; Klapuri, 06):
Auditory model

The Equivalent Rectangular Bandwidths (ERB) of the filters:

\[b_c = 0.108 f_c + 24.7 \]

\[f_c = 229 \times (10^{\psi/21.4} - 1) \]

\[\psi = \psi_{\text{min}} : (\psi_{\text{max}} - \psi_{\text{min}})/F : \psi_{\text{max}} \]

\[\psi_{\text{min/max}} = 21.4 \times \log_{10}(0.00437 f_{\text{min/max}} + 1) \]

\[F = \text{number of filters.} \]
Auditory model

- Beating: interference between sounds of frequencies f_1 and f_2

- Fluctuation of amplitude envelope of frequency $|f_2 - f_1|$

- The magnitude of the beating is determined by the smaller of the two amplitudes
Auditory model

- Inner hair-cell (IHC) model:
Auditory model

- Sub-band periodicity analysis using ACF
- Summing across channels (Summary ACF)
- Weighting of the channels changes the topology of the SACF
Auditory model
Comparing detection functions
Comparing detection functions
Comparing detection functions

![Graph showing comparison of detection functions with spectral ACF on the x-axis and some numerical values on the y-axis.](image-url)
Comparing detection functions
Tempo

- Tempo refers to the pace of a piece of music and is usually given in beats per minutes (BPM).

- Global quality vs time-varying local characteristic.

- Thus, in computational terms we differentiate between tempo estimation and tempo (beat) tracking.

- In tracking, beats are described by both their rate and phase.

- Vast literature: see, e.g. Hainsworth, 06; or Goto, 06 for reviews.
Tempo estimation and tracking (Davies, 05)

- Novelty function (NF): remove local mean + half-wave rectify

- Periodicity: dot multiply ACF of NF with a weighted comb filterbank

\[R_w(l) = \left(\frac{l}{b^2} \right) e^{-\frac{l^2}{2b^2}} \]

From Davies and Plumbley, ICASSP 2005
Tempo estimation and tracking (Davies, 05)

• Choose lag that maximizes the ACF
Tempo estimation and tracking (Davies, 05)

- Choose filter that maximizes the dot product
Tempo estimation and tracking (Davies, 05)

- Phase: dot multiply DF with shifted versions of selected comb filter
Tempo estimation and tracking (Grosche, 09)

- DFT of novelty function $\gamma(n)$ for frequencies: $\omega \in [30 : 600] / (60 \times f_{s,\gamma})$

- Choose frequency that maximizes the magnitude spectrum at each frame

- Construct a sinusoidal kernel: $\kappa(m) = w(m - n) \cos(2\pi(\hat{\omega}m - \hat{\varphi}))$

- In Grosche, 09 phase is computed as:

 $$\hat{\varphi} = \frac{1}{2\pi} \arccos \left(\frac{\text{Re}(F(\hat{\omega}, n))}{|F(\hat{\omega}, n)|} \right)$$

- Alternatively, we can find the phase that maximizes the dot product of $\gamma(n)$ with shifted versions of the kernel, as before.
Tempo estimation and tracking (Grosche, 09)

- tracking function: Overlap-add of optimal local kernels + half-wave rectify

From Grosche and Mueller, WASPAA 2009
Tempo estimation and tracking (Davies, 05)
Tempo estimation and tracking (Grosche, 09)

The Grid - Swamp Thing

Detection Function

Post-processed DF

Tempogram

PLP
Tempo estimation and tracking (Davies, 05)

Groove Armada - Whatever, Whenever

Post-processed DF

Filtered ACF

ACF

BPM

PLP
Tempo estimation and tracking (Grosche, 09)

Groove Armada - Whatever, Whenever

Detection Function

Post-processed DF

Tempogram

PLP
Tempo estimation and tracking (Davies, 05)
Tempo estimation and tracking (Grosche, 09)

Herbie Hancock - Cantaloup Island

Detection Function

Post-processed DF

Tempogram

PLP
Tempo estimation and tracking (Davies, 05)
Tempo estimation and tracking (Grosche, 09)
References

References

• This lecture borrows heavily from: Emmanuel Vincent’s lecture notes on pitch estimation (QMUL - Music Analysis and Synthesis); and from Anssi Klapuri’s lecture notes on F0 estimation and automatic music transcription (ISMIR 2004 Graduate School: http://ismir2004.ismir.net/graduate.html)