New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

A New Key to Unlocking the Mysteries of Physics? Quantum Turbulence

April 21, 2014

The recent discovery of the Higgs boson has confirmed theories about the origin of mass and, with it, offered the potential to explain other scientific mysteries.

But, scientists are continually studying other, less-understood forces that may also shed light on matters not yet uncovered. Among these is quantum turbulence, writes Katepalli Sreenivasan, an NYU University Professor, in a special issue of Proceedings of the National Academy of Sciences.

Sreenivasan’s introductory analysis, written with issue co-editors Carlo Barenghi of Newcastle University and Ladislav Skrbek of Prague’s Charles University, examines the direction and promise of this phenomenon.

Quantum turbulence is the chaotic motion—at very high rates—of fluids that exist at temperatures close to zero.

Observers as far back as Leonardo da Vinci have studied turbulence—a complex state of fluid motion. The Renaissance artist observed that water falling into a pond creates eddies of motion, thus realizing that the motion of water shaped the landscape.

Today, scientists study much bigger ponds—the universe and beyond—but remain focused on this phenomenon’s basic principles.

This is because of its fundamental significance in daily occurrences—for instance, the efficiency of jet engines depends on turbulence—as well as its impact on developments far beyond our observation, such as the generation of galactic magnetic fields.

However, many of its workings continue to elude comprehension.

“Turbulence still provides physicists, applied mathematicians, and engineers with a continuing challenge,” the authors write.

The PNAS issue focuses on a special form of turbulence, quantum turbulence, which appears in quantum fluids. These fluids differ from ordinary fluids in some fundamental ways—in addition to their vitality at near-zero temperatures. One, they can flow freely because they have no viscosity—or resistance hindering flow. And, two, their rotation is limited to vortex lines—in stark contrast to eddies in ordinary fluids, which vary in size, shape, and strength.

The introductory article co-authored by Sreenivasan, a professor in NYU’s Courant Institute of Mathematical Sciences and NYU’s Department of Physics as well as the Eugene Kleiner Professor at the Polytechnic School of Engineering, outlines the basic properties of quantum turbulence and considers the differences between quantum and classical turbulence.

“Our aim is to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics,” the authors write. “Further experimental studies of quantum turbulence, probing physical conditions not known to Nature at temperatures many orders of magnitude lower, may uncover phenomena not yet known to physics.”

This Press Release is in the following Topics:
Courant Institute of Mathematical Sciences, Arts and Science, Research, Polytechnic School of Engineering, Faculty

Type: Press Release

Press Contact: James Devitt | (212) 998-6808

Leonardo da Vinci

Observers as far back as Leonardo da Vinci have studied turbulence—a complex state of fluid motion. In a special issue of Proceedings of the National Academy of Sciences, NYU's Katepalli Sreenivasan examines the promise of quantum turbulence, which has the potential to unlock ongoing scientific mysteries. ©

Search News

NYU In the News

Paying It Backward: NYU Alum Funds Scholarships

The Wall Street Journal profiled Trustee Evan Chesler on why he decided to chair the Momentum fund-raising campaign.

A Nobel Prize Party: Cheese, Bubbles, and a Boson

The New Yorker talked to Professor Kyle Cranmer and graduate student Sven Kreiss about NYU’s role in the discovery of the Higgs boson, which resulted in a Nobel prize for the scientists who predicted its existence.

The World as They Knew It

The New York Times reviewed the exhibit at the Institute for the Study of the Ancient World on how ancient Greeks and Romans mapped the known and unknown areas of their world.

Elite Institutions: Far More Diverse Than They Were 20 Years Ago

NYU made stronger gains over the last 20 years in increasing diversity than any other major research university, according to the Chronicle of Higher Education.

Program Seeks to Nurture ‘Data Science Culture’
at Universities

The New York Times reported on the multi-million collaboration among NYU and two other universities to harness the potential of Big Data, including an interview with Professor Yann LeCun, director of NYU’s Center for Data Science.

NYU Footer