New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Sequentially Expressed Genes in Neural Progenitors Create Neural Diversity, Biologists Find

June 19, 2013
368

A team of New York University biologists has found that a series of genes sequentially expressed in brain stem cells control the generation of neural diversity in visual system of fruit flies. Their results are reported in the latest issue of the journal Nature.

In order for the brain to properly develop and function, a vast array of different types of neurons and glia must be generated from a small number of progenitor cells. By better understanding the details of this process, scientists can develop ways to recognize and remedy a range of neural afflictions such as microcephaly or neurodegeneration.

The research, conducted in the laboratory of NYU Biology Professor Claude Desplan, examined this process by studying the neurons in the visual centers of the fruit fly Drosophila. Drosophila is a powerful model for studying neural diversity because of its relative simplicity, although the studied brain structure, termed the medulla, contains approximately 40,000 neurons, belonging to more than 70 cell types.

Specifically, they examined the genes expressed in neuroblasts—dividing neural stem cells that generate neurons—in the medulla and how and when they are expressed. Their findings revealed that five genes encoding five different transcription factors—proteins that bind to specific DNA sequences—are expressed in a specified order in each of the medulla neuroblasts as they age. The five genes form a temporal cascade: one gene can activate the next gene and repress the previous gene, thus ensuring the progression of the temporal sequence.

It is this process, the researchers found, that controls the sequential generation of different neural types in the Drosophila medulla. These results, together with other studies in the field, suggest that a similar mechanism is utilized to generate neural diversity in the brains of humans and other mammals.

The study’s lead authors were Xin Li and Ted Erclik, post-doctoral fellows in the Desplan lab.

The research was supported by the National Institutes of Health (NIH) [grant R01EY01791]; the Robert Leet and Clara Guthrie Patterson Trust Postdoctoral Fellowship; the Canadian Institutes of Health Research (CIHR); and a career development fellowship from the Leukemia and Lymphoma Society.

This Press Release is in the following Topics:
Arts and Science, Research, Faculty

Type: Press Release

Press Contact: James Devitt | (212) 998-6808

Sequentially Expressed Genes in Neural Progenitors Create Neural Diversity, Biologists Find

A team of NYU biologists has found that a series of genes sequentially expressed in brain stem cells control the generation of neural diversity in visual system of fruit flies. In order for the brain to properly develop and function, a vast array of different types of neurons and glia must be generated from a small number of progenitor cells. By better understanding the details of this process, scientists can develop ways to recognize and remedy a range of neural afflictions. ©iStockPhoto/ktsimage


Search News



NYU In the News

Entrepreneurship Lab Opens at NYU

Crain’s New York Business covered the opening of the Mark and Debra Leslie Entrepreneurial eLab, which will be the headquarters for NYU’s Entrepreneurial Institute and all of the University’s programs aimed at promoting innovation and startups.

A Globalizer for N.Y.U. in Abu Dhabi

The New York Times profiled Bill Bragin who will become the first executive artistic director of NYU Abu Dhabi’s new performing arts center.

Think Tank to Ponder a Future for Ballet

The New York Times profiled Jennifer Homans, the director of NYU’s new Center for Ballet and the Arts.

The Brilliant Ten: Jonathan Viventi Builds Devices That Decode Thoughts

Popular Science named Assistant Bioengineering Professor Jonathan Viventi as one of its “brilliant ten” for his research into brain implants that could one day halt epileptic episodes:

Living and Leaving the Dream: Adrian Cardenas’ Journey from the Major Leagues to College

The New York Times ran a feature on Adrian Cardenas, a former major league baseball player who is now studying philosophy and creating writing at NYU.

NYU Footer