New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Neuroscientists Find Excessive Protein Synthesis Linked to Autistic-Like Behaviors

April 11, 2013

Autistic-like behaviors can be partially remedied by normalizing excessive levels of protein synthesis in the brain, a team of researchers has found in a study of laboratory mice.

The findings, which appeared in the magazine Nature, provide a pathway to the creation of pharmaceuticals aimed at treating autism spectrum disorders (ASD) that are associated with diminished social interaction skills, impaired communication ability, and repetitive behaviors.

“The creation of a drug to address ASD will be difficult, but these findings offer a potential route to get there,” says Eric Klann, a professor at NYU’s Center for Neural Science and the study’s senior author. “We have not only confirmed a common link for several such disorders, but also have raised the exciting possibility that the behavioral afflictions of those individuals with ASD can be addressed.”

The study’s other co-authors include researchers from the University of California, San Francisco’s School of Medicine and three French institutions—Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, and Le Centre National de la Recherche Scientifique.

The researchers focused on the EIF4E gene, whose mutation is associated with autism. The mutation causing autism was proposed to increase levels of the eIF4E, the protein product of EIF4E, and lead to exaggerated protein synthesis. Excessive eIF4E signaling and exaggerated protein synthesis also may play a role in a range of neurological disorders, including Fragile X Syndrome (FXS).

In their experiments, the researchers examined mice with increased levels of eIF4E. They found that these mice had exaggerated levels of protein synthesis in the brain and exhibited behaviors similar to those found in autistic individuals—repetitive behaviors, such as repeatedly burying marbles, diminished social interaction (the study monitored interactions with other mice), and behavioral inflexibility (the afflicted mice were unable to navigate mazes that had been slightly altered from ones they had previously solved). The researchers also found altered communication between neurons in brain regions linked to the abnormal behaviors.

To remedy these autistic-like behaviors, the researchers then tested a drug, 4EGI-1, which diminishes protein synthesis induced by the increased levels of eIF4E. Through this drug, they hypothesized that they could return the afflicted mice’s protein production to normal levels, and, with it, reverse autistic-like behaviors.

The subsequent experiments confirmed their hypotheses. The mice were less likely to engage in repetitive behaviors, more likely to interact with other mice, and were successful in navigating mazes that differed from those they previously solved, thereby showing enhanced behavioral flexibility. Additional investigation revealed that these changes were likely due to a reduction in protein production—the levels of newly synthesized proteins in the brains of these mice were similar to those of normal mice.

The study’s other co-authors were Emanuela Santini, Thu Huynh, Andrew MacAskill, Adam Carter, and Hanoch Kaphzan of NYU’s Center for Neural Science; Davide Ruggero of the University of California, San Francisco; and Philippe Pierre of the French institutions.

The research was supported by grants from the National Institutes of Health, a Department of Defense Congressionally Directed Medical Research Program award, and the Wellcome Trust.


Type: Article

Neuroscientists Find Excessive Protein Synthesis Linked to Autistic-Like Behaviors

Search News



NYU In the News

CUSP Unveils its “Urban Observatory”

Crain’s New York Business profiled CUSP’s “Urban Observatory” that is continuously photographing lower Manhattan to gather scientific data.

Post-Sandy Upgrades at the Langone Medical Center

NY1 reported on the major post-Sandy upgrades and renovations made at the Medical Center to protect the hospital from future catastrophic storms.

Steinhardt Research Helps Solve Tough Speech Problems.

The Wall Street Journal reported on research at Steinhardt’s Department of Communicative Sciences and Disorders, including an interview with Assistant Professor Tara McAllister Byun, that uses ultrasound to help solve tough speech problems.

Times Column Lauds Professor Stevenson’s New Memoir

New York Times columnist Nicholas Kristof wrote a column about “Just Mercy,” a new memoir by Law Professor Bryan Stevenson, the founder of the Equal Justice Initiative, whom he noted has been called America’s Nelson Mandela.

Entrepreneurship Lab Opens at NYU

Crain’s New York Business covered the opening of the Mark and Debra Leslie Entrepreneurial eLab, which will be the headquarters for NYU’s Entrepreneurial Institute and all of the University’s programs aimed at promoting innovation and startups.

NYU Footer