New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Assembly Not Required for New Micro Particles

January 3, 2013

NYU scientists have created new kinds of particles 1/100th the diameter of a human hair that spontaneously assemble themselves into structures resembling molecules made from atoms. These new particles come together, or “self-assemble,” to form structures in patterns that were previously impossible to make, and hold promise for manufacturing advanced optical materials and ceramics.

The method, described in the journal Nature, was developed by a team of chemists, chemical engineers, and physicists working together at NYU’s Materials Research Science and Engineering Center, an interdisciplinary laboratory sponsored by the National Science Foundation. The work also included researchers currently working at the Dow Chemical Company and Harvard University’s School of Engineering & Applied Sciences and Department of Physics.

The method is centered on enhancing the architecture of colloids—small particles suspended within a fluid medium. Colloidal dispersions are composed of everyday items such as paint, milk, gelatin, glass, and porcelain, but their potential to create new materials remains largely untapped.

Previously, scientists had succeeded in building rudimentary structures from colloids. But the ability to use colloids to design and assemble complex three-dimensional structures, which are vital to the design of advanced optical materials, has been limited. This is, in part, because colloids lack directional bonds, which are necessary to control particle self-assembly as well as to enhance complexity while maintaining the structural integrity of these creations. Such assemblies serve as the building blocks of the natural world—e.g., atoms and molecules—but they are rare in the colloidal domain.

“What this method aimed to do was to use nature’s properties for atoms and apply them to the colloidal world,” explains NYU chemistry professor Marcus Weck, one of the study’s co-authors.

In developing colloids with such properties, the researchers engineered chemical “patches” that can form directional bonds, thus allowing for the assembly of three-dimensional “lattices” with only a few connections between particles, an important design element for many advanced materials. Without directional bonding, such structures are unstable.

The trick was establishing bonding capabilities on the patches. The scientists did so by using single strands of DNA, which scientists at NYU and elsewhere have previously employed to organize small particles. In the method described in Nature, these strands of DNA served as sticky ends to which particle patches could adhere.

“What this means is we can make particles that attach only at the patches, and then we can program them so only specific kinds of particles attach at those patches,” says NYU physics professor David Pine, one of the study’s co-authors. “This gives us tremendous flexibility to design three-dimensional structures.”

The researchers added that the specificity of DNA interactions between patches means that colloids with different properties—such as size, color, chemical functionality, or electrical conductivity—could lead to the production of new materials. These potentially include three-dimensional electrically wired networks or photonic crystals to enhance the optical displays of a range of consumer products and to improve the speed of computer chips.

The research was supported by grants from the National Science Foundation. 


Type: Article

Assembly Not Required for New Micro Particles

Search News



NYU In the News

CUSP Unveils its “Urban Observatory”

Crain’s New York Business profiled CUSP’s “Urban Observatory” that is continuously photographing lower Manhattan to gather scientific data.

Post-Sandy Upgrades at the Langone Medical Center

NY1 reported on the major post-Sandy upgrades and renovations made at the Medical Center to protect the hospital from future catastrophic storms.

Steinhardt Research Helps Solve Tough Speech Problems.

The Wall Street Journal reported on research at Steinhardt’s Department of Communicative Sciences and Disorders, including an interview with Assistant Professor Tara McAllister Byun, that uses ultrasound to help solve tough speech problems.

Times Column Lauds Professor Stevenson’s New Memoir

New York Times columnist Nicholas Kristof wrote a column about “Just Mercy,” a new memoir by Law Professor Bryan Stevenson, the founder of the Equal Justice Initiative, whom he noted has been called America’s Nelson Mandela.

Entrepreneurship Lab Opens at NYU

Crain’s New York Business covered the opening of the Mark and Debra Leslie Entrepreneurial eLab, which will be the headquarters for NYU’s Entrepreneurial Institute and all of the University’s programs aimed at promoting innovation and startups.

NYU Footer