New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Researchers Create Molecular Braille to Identify DNA Molecules

September 28, 2012

Researchers at NYU and UCLA have developed a method to detect sequence differences in individual DNA molecules by taking nanoscopic pictures of the molecules themselves. The work was reported in the Journal of the Royal Society Interface.

Using the approach they call “Direct Molecular Recognition,” the UCLA and NYU researchers used nanoparticles to turn the DNA molecules into a form of molecular braille that can be read in the scale of nanometers, or one billionth of a meter, using high-speed Atomic Force Microscopy (AFM).

The leaders of the study were research professors Jason Reed and Jim Gimzewski, a nanotechnology pioneer, both at UCLA’s California Nanosystems Institute, and professor Bud Mishra, a genomics expert, at NYU’s Courant Institute of Mathematical Sciences. This group believes the method will have many practical uses, such as super-sensitive detection of DNA molecules in genomic research and medical diagnostics as well as in identifying pathogens.

While there are a variety of techniques currently used for this purpose, they are time consuming, technically difficult, and expensive. They also require a significant amount of genetic material in order to make accurate readings and often require prior knowledge of the sample composition.

According to Mishra, to overcome these shortcomings, the team devised a “single-cell, single-molecule” method that would dispense with the complex chemical manipulations on which existing methods are based, and, instead, utilize the unique shapes of the molecules themselves as the method of identification. This approach has the benefits of being rapid and sensitive to the level of a single molecule.

Reed says that “the long term goal of our team’s research is to dissect, understand, and control the biology of single cells in complex tissues, such as brain, or in malignant tumors. Furthering this body of work requires that we address an unsolved problem in single-cell molecular analysis: the lack of a method to routinely, reliably, and inexpensively determine global gene transcriptional activity.”

In their paper, the team closely examined the potential use of this technique to quantify the activity of genes in living
tissue, a method known as transcriptional profiling.

They were able to show that their Direct Molecular Recognition technique could accurately quantitate the relative abundance of multiple DNA species in a mixture using only a handful of molecules—a result not achievable using other methods.

Their study was supported by a grant from the National Institute of General Medical Sciences, part of the National Institutes of Health.

Type: Article

Researchers Create Molecular Braille to Identify DNA Molecules

Search News



NYU In the News

Entrepreneurship Lab Opens at NYU

Crain’s New York Business covered the opening of the Mark and Debra Leslie Entrepreneurial eLab, which will be the headquarters for NYU’s Entrepreneurial Institute and all of the University’s programs aimed at promoting innovation and startups.

A Globalizer for N.Y.U. in Abu Dhabi

The New York Times profiled Bill Bragin who will become the first executive artistic director of NYU Abu Dhabi’s new performing arts center.

Think Tank to Ponder a Future for Ballet

The New York Times profiled Jennifer Homans, the director of NYU’s new Center for Ballet and the Arts.

The Brilliant Ten: Jonathan Viventi Builds Devices That Decode Thoughts

Popular Science named Assistant Bioengineering Professor Jonathan Viventi as one of its “brilliant ten” for his research into brain implants that could one day halt epileptic episodes:

Living and Leaving the Dream: Adrian Cardenas’ Journey from the Major Leagues to College

The New York Times ran a feature on Adrian Cardenas, a former major league baseball player who is now studying philosophy and creating writing at NYU.

NYU Footer