New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Researchers Take Next Step Toward Enhancing Artificial Proteins

August 29, 2012
454

A team of researchers has developed a method to successfully predict the structures of artificial proteins, a breakthrough that could yield valuable methods for making pharmaceuticals and other chemicals that require precise assembly of complex structures.

The work, which appears in the Proceedings of the National Academy of Sciences (PNAS), was conducted by researchers at NYU, the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), Stony Brook University, and Temple University.

The structures of natural proteins define their complex functions. Based on interactions between their amino acids, proteins can fold and twist into distinct, chemically directed shapes. The resulting structure dictates the proteins’ actions in the body, so accurate modeling of structure is vital to understanding their functions.

Peptoids, or synthetic proteins, follow similar design rules. Because peptoids are less vulnerable to chemical or metabolic breakdown than are proteins, they hold promise for pharmaceuticals and materials. Moreover, scientists can now build and manipulate peptoid molecules with great precision. But to design peptoids for a specific function, researchers need to first untangle the complex relationship between a peptoid’s composition and its folded structure.

Past efforts to predict protein structure have had limited success, but the research team for the PNAS study demonstrated that a computer modeling approach similar to one used to predict protein structures can accurately predict peptoid conformations as well.

“The research was carried out by a remarkable, interdisciplinary team of scientists,” said Kent Kirshenbaum, an associate professor in NYU’s Department of Chemistry and one of the study’s co-authors. “Some of the team have worked together on this truly difficult problem for almost 20 years. The researchers include both experimentalists and theorists who have been able to guide one another in discovering how these peptoid molecules fold.”

The research team, which also included Richard Bonneau, an associate professor in NYU’s Department of Biology, devised an innovative approach to make accurate predictions of peptoid folding—a “blind structure prediction” challenge. This self-assessment technique allows scientists to test the fidelity of their computational models by predicting the three-dimensional structure of a known molecule and then comparing their proposed structure to the X-ray crystallography results.

A combined experimental and computational method was employed by the peptoid team in an effort to advance the computational design of peptoid structures. X-ray crystal structures for three peptoid molecules, two small linear molecules and one large cyclic molecule, were simultaneously determined, but not disclosed to the theoretical modelers. The experimentalists then used a combination of two simulation techniques, Replica Exchange Molecular Dynamics (REMD) simulation and Quantum Mechanical refinement (QM). REMD can efficiently predict the preferred general conformations, and the QM calculations further refine the conformational prediction. In combination, these two calculations accurately define the physical structures of molecules.

The proposed structural predictions of the peptoid molecules did exceedingly well at calculating the actual folded conformations, suggesting that reliable structure prediction for complex three-dimensional folds is within reach and marking an enormous step forward on the path to reliable and efficient computational peptoid design.

Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and supported by the DOE Office of Science. Additional funding came from the Defense Threat Reduction Agency, the National Science Foundation, and the National Institutes of Health.

This Press Release is in the following Topics:
Arts and Science, Research, Faculty

Type: Press Release

Press Contact: James Devitt | (212) 998-6808

Researchers Take Next Step Toward Enhancing Artificial Proteins

A team of researchers has developed a method to successfully predict the structures of artificial proteins, a breakthrough that could yield valuable methods for making pharmaceuticals and other chemicals that require precise assembly of complex structures. Pictured is a predicted structure of the cyclic nonamer proposed by the researchers, shown to match the actual folded structure with remarkable accuracy.


Search News



NYU In the News

NYU Offers Financial Aid to Undocumented Students

The Wall Street Journal reported that NYU will begin offering scholarship aid to undocumented students for the school year beginning next September.

NYU Adopts Lean LaunchPad Program to Teach Entrepreneurship

Startup guru Steve Blank, in a Huffington Post blog, described how NYU adopted the Lean LaunchPad model to teach entrepreneurship to students and faculty at NYU.

Biology Professor Jane Carlton Examines Wastewater for the City’s Microbiome

The New York Times’ Science Times column “Well” profiled Biology Professor Jane Carlton and her research project to sequence microbiome of New York City by examining wastewater samples.

Steinhardt Professors Use a Play as Therapy

The New York Times wrote about a play written by Steinhardt Music Professor Robert Landy about the relationship between Adjunct Professor Cecilia Dintino, a clinical psychologist in the Drama Therapy Program, and a patient, former Broadway actress Jill Powell.

NYU Public Health Experts Urge Strengthening Local Health Systems to Combat Ebola

Dean Cheryl Healton of the Global Institute of Public Health and Public Health Professor Christopher Dickey wrote an op-ed in the Huffington Post saying international health agencies need to strengthen their presence in countries at the local level to prevent future ebola outbreaks.

NYU Footer