New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Long-Held Genetic Theory Doesn’t Quite Make the Grade,Biologists Find

April 26, 2012
345

New York University biologists have discovered new mechanisms that control how proteins are expressed in different regions of embryos, while also shedding additional insight into how physical traits are arranged in body plans. Their findings, which appear in the journal Cell, call for reconsideration of a decades-old biological theory.

The researchers investigated a specific theory—morphogen theory, which posits that proteins controlling traits are arranged as gradients, with different amounts of proteins activating genes to create specified physical features. This theory was first put forth in the 1950s by mathematician and World War II code breaker Alan Turing and refined in the 1960s by Lewis Wolpert. It has been used to explain why a tiger has stripes, among other phenomena.

But some biologists have raised questions about the theory, which contends that physical features are necessarily tied to absolute concentrations of proteins within the morphogen gradient. If a certain critical mass of protein is present, then a given physical feature—for example, cells that make the skin on your forehead—will appear. If less than that critical mass is present, a different structure—say, the skin that makes your eyebrows—will appear, and a boundary will be formed between the two structures.

But alternative views have suggested that physical features are not necessarily the result of a specified number of proteins, but, rather, come from more complex interactions between multiple gradients that work against one another.

The NYU biologists explored this process by studying the fruit fly Drosophila, a powerful model for studying genetic development as it is amenable to precise genetic manipulations. They focused on one protein, Bicoid (Bcd), which is expressed in a gradient with highest levels at the end of the embryo that will become the mature fly’s head.

The researchers, headed by Stephen Small, chair of NYU’s Department of Biology, examined a large number of target genes that are directly activated by Bcd. Each target gene is expressed in a region of the embryo with a boundary that corresponds to a specific structure.

By examining DNA sequences associated with these target genes, the NYU researchers discovered binding sites for three other proteins—Runt, Capicua, and Kruppel—which all act as repressors. All three proteins are expressed in gradients with highest levels in the middle part of the embryo, and thus are positioned in exactly the opposite orientation compared to the Bcd activation gradient.

By changing the spatial distribution of the repressors and by manipulating their binding sites, Small and his colleagues showed that these repressors antagonize Bcd-dependent activation and are absolutely critical for establishing the correct order of boundaries that are found in a normal embryo.

In other words, contrary to Turing’s theory, a single gradient of proteins does not have sufficient power to form the same body plan in each member of a species; however, if there are multiple gradients that work against each other, then the system becomes robust enough for normal development.

While the results raise questions about morphogen theory, the researchers explained that their findings did not “falsify” it, but, rather, suggested it needed some additional refinement.

The study’s other co-authors were Constance Mei, an NYU undergraduate at the time of the study who received her bachelor’s degree in 2011; current NYU doctoral students Hongtao Chen and Zhe Xu; and Danyang Yu, who received her doctorate in biology from NYU in 2009 and who is now an assistant professor of biology at Farleigh Dickinson University.

 

This Press Release is in the following Topics:
Research, Arts and Science, Faculty

Type: Press Release

Press Contact: James Devitt | (212) 998-6808

Long-Held Genetic Theory Doesn’t Quite Make the Grade, Biologists Find

NYU biologists have discovered new mechanisms that control how proteins are expressed in different regions of embryos, while also shedding additional insight into how physical traits are arranged in body plans. Their findings call for reconsideration of a decades-old biological theory. The researchers investigated a specific theory—morphogen theory, which posits that proteins controlling traits are arranged as gradients, with different amounts of proteins activating genes to create specified physical features. This theory was first put forth in the 1950s by mathematician and World War II code breaker Alan Turing and refined in the 1960s by Lewis Wolpert. It has been used to explain why a tiger has stripes, among other phenomena. ©iStockPhoto.com/nialat


Search News



NYU In the News

CUSP Unveils its “Urban Observatory”

Crain’s New York Business profiled CUSP’s “Urban Observatory” that is continuously photographing lower Manhattan to gather scientific data.

Post-Sandy Upgrades at the Langone Medical Center

NY1 reported on the major post-Sandy upgrades and renovations made at the Medical Center to protect the hospital from future catastrophic storms.

Steinhardt Research Helps Solve Tough Speech Problems.

The Wall Street Journal reported on research at Steinhardt’s Department of Communicative Sciences and Disorders, including an interview with Assistant Professor Tara McAllister Byun, that uses ultrasound to help solve tough speech problems.

Times Column Lauds Professor Stevenson’s New Memoir

New York Times columnist Nicholas Kristof wrote a column about “Just Mercy,” a new memoir by Law Professor Bryan Stevenson, the founder of the Equal Justice Initiative, whom he noted has been called America’s Nelson Mandela.

Entrepreneurship Lab Opens at NYU

Crain’s New York Business covered the opening of the Mark and Debra Leslie Entrepreneurial eLab, which will be the headquarters for NYU’s Entrepreneurial Institute and all of the University’s programs aimed at promoting innovation and startups.

NYU Footer