New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Neuroscientists Find Greater Complexity in How We Perceive Motion

December 2, 2011
144

How we perceive motion is a significantly more complex process than previously thought, researchers at New York University’s Center for Neural Science, Stanford University and the University of Washington have found. Their results, which appear in the journal Current Biology, show that the relationship between the brain and visual perception varies, depending on the type of motion we are viewing.

Neuroscientists have posited that our perception of motion is derived from a relatively simple process—that is, it relies on a single cortical area in the brain. This region, MT, has a well-established role in processing information about moving visual objects. However, less clear is the scope of its influence—does it dictate our ability to detect all types of motion or is its function more limited or, perhaps, more nuanced?

With this in mind, the NYU-led team examined how the visual system processes two types of motion: local motion, which involves tracking signals that fall within a small retinal area, and global motion, in which several movements are integrated over larger areas. Specifically, they monitored activity in MT to determine if its neurons were active in response to both types of motion.

In normal scenes, local and global motion are normally in agreement. Here, the researchers conducted experiments in which macaque monkey and human subjects watched specially crafted patterns in which the local and global motion information were in competition. The researchers made physiological and perceptual measurements of brain activity.

Their results showed notable differences in how the visual system functions in processing local and global motion. They found that neuronal activity in MT was controlled by the local motion in the stimulus and unaffected by global motion. Under the same conditions, though, humans’ perceptual responses were dominated by global motion, which means that their responses were determined by a second brain mechanism that encodes global motion, whose nature is currently unknown.

J. Anthony Movshon, director of the Center for Neural Science and the paper’s senior author, says that the work opens a window for further study: “While comprehending the specifics of this process requires more work, it’s clear that motion perception does not depend on a single cortical brain area, but, rather, reflects the action and interaction of multiple mechanisms. We now have new tools to help us identify and study brain systems that are currently unknown.”

The study’s other authors were: James Hedges, Yevgeniya Gartshteyn,  Adam Kohn, Nicole Rust, all researchers at NYU’s Center for Neural Science at the time of the study; William Newsome of Stanford University’s Department of Neurobiology; and Michael Shadlen of the University of Washington’s Department of Physiology and Biophysics. Newsome and Shadlen are also investigators for the Howard Hughes Medical Institute.

Movshon and Newsome shared the 2010 António Champalimaud Vision Award for their work on how the brain reconstructs images. The Champalimaud Vision Award, given by the Lisbon-based Champalimaud Foundation, comes with a $1.3 million prize, the largest monetary prize in the field of vision and one of the biggest scientific and humanitarian prizes in the world.

This Press Release is in the following Topics:
Arts and Science, Research, Faculty

Type: Press Release

Press Contact: James Devitt | (212) 998-6808

Neuroscientists Find Greater Complexity in How We Perceive Motion

How we perceive motion is a significantly more complex process than previously thought, researchers at NYU’s Center for Neural Science, Stanford University and the University of Washington have found. Their results show that the relationship between the brain and visual perception varies, depending on the type of motion we are viewing. ©iStockphoto.com/LLeha


Search News



NYU In the News

CUSP Unveils its “Urban Observatory”

Crain’s New York Business profiled CUSP’s “Urban Observatory” that is continuously photographing lower Manhattan to gather scientific data.

Post-Sandy Upgrades at the Langone Medical Center

NY1 reported on the major post-Sandy upgrades and renovations made at the Medical Center to protect the hospital from future catastrophic storms.

Steinhardt Research Helps Solve Tough Speech Problems.

The Wall Street Journal reported on research at Steinhardt’s Department of Communicative Sciences and Disorders, including an interview with Assistant Professor Tara McAllister Byun, that uses ultrasound to help solve tough speech problems.

Times Column Lauds Professor Stevenson’s New Memoir

New York Times columnist Nicholas Kristof wrote a column about “Just Mercy,” a new memoir by Law Professor Bryan Stevenson, the founder of the Equal Justice Initiative, whom he noted has been called America’s Nelson Mandela.

Entrepreneurship Lab Opens at NYU

Crain’s New York Business covered the opening of the Mark and Debra Leslie Entrepreneurial eLab, which will be the headquarters for NYU’s Entrepreneurial Institute and all of the University’s programs aimed at promoting innovation and startups.

NYU Footer