New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

NYU Researchers Find Corn Starch Solution Can Help Shape Solid Materials

November 4, 2010
121

New York University researchers have developed a method to shape solid materials using a corn starch solution. The process, devised by researchers in NYU’s Courant Institute of Mathematical Sciences and Department of Physics, offers a potential technique for material cutting and manufacturing processes.

Their work is described in the journal Physical Review of Letters.

Manufacturers use a variety of methods for shaping solid materials, ranging from laser cutting to high-speed jets of water. While altering the shape of such materials, such as glass, metal, or stone, is relatively straightforward, doing so with precision often proves challenging.

With this in mind, the NYU researchers sought to create an alternative, but rudimentary, method to shape solid materials in a precise fashion. To do so, they considered a process involving a corn starch solution.

Similar solutions have proved valuable in creating body armor—but for different reasons. The molecules in these fluids—also called shear-thickening fluids—are closely packed, but loosely arranged. Under most conditions, they flow like most liquids. However, when met with pressure from an object or other force, its particles interlock and the fluid acts like a solid. Body armor comprised of shear-thickening fluids, when met with bullets, become hard and deflect incoming projectiles.

The NYU researchers sought to apply these principles in a different manner. Instead of using the solution to deflect objects, they aimed to use it as part of a process to shape solid materials—in this case, a wall of modeling clay.

To do this, they submerged a motor-powered, plastic sphere through the cornstarch solution toward a containing wall made of modeling clay, stopping just short of the wall. Using the force of the sphere to harden the cornstarch solution, the researchers were able to make indentations in the wall of modeling clay. In addition, they were able to do so with a degree of precision by taking into account speed, force, and geometry. By moving the sphere at fast speeds through the solution, they created large depressions in the clay; by slowing it down, they created smaller depressions.

The study’s authors were: Bin Liu, a post-doctoral researcher in NYU’s Department of Physics, Michael Shelley, a professor in NYU’s Courant Institute of Mathematical Sciences; and Jun Zhang, a professor in NYU’s Department of Physics and Courant Institute.

The research was supported by grants from the National Science Foundation and the Department of Energy.

This Press Release is in the following Topics:
NYUToday-feature, Courant Institute of Mathematical Sciences, Arts and Science, Research, Faculty, Sponsored Research

Type: Press Release

Press Contact: James Devitt | (212) 998-6808

NYU Researchers Find Corn Starch Solution Can Help Shape Solid Materials

NYU researchers have developed a method to shape solid materials using a corn starch solution. To do this, they submerged a motor-powered, plastic sphere through the cornstarch solution toward a containing wall made of clay, stopping just short of the wall. Using the force of the sphere to harden the cornstarch solution, the researchers were able to make indentations in the wall. In addition, they were able to do so with a degree of precision by taking into account speed, force, and geometry. The process offers a potential technique for material cutting and manufacturing processes.


Search News



NYU In the News

Paying It Backward: NYU Alum Funds Scholarships

The Wall Street Journal profiled Trustee Evan Chesler on why he decided to chair the Momentum fund-raising campaign.

A Nobel Prize Party: Cheese, Bubbles, and a Boson

The New Yorker talked to Professor Kyle Cranmer and graduate student Sven Kreiss about NYU’s role in the discovery of the Higgs boson, which resulted in a Nobel prize for the scientists who predicted its existence.

The World as They Knew It

The New York Times reviewed the exhibit at the Institute for the Study of the Ancient World on how ancient Greeks and Romans mapped the known and unknown areas of their world.

Elite Institutions: Far More Diverse Than They Were 20 Years Ago

NYU made stronger gains over the last 20 years in increasing diversity than any other major research university, according to the Chronicle of Higher Education.

Program Seeks to Nurture ‘Data Science Culture’
at Universities

The New York Times reported on the multi-million collaboration among NYU and two other universities to harness the potential of Big Data, including an interview with Professor Yann LeCun, director of NYU’s Center for Data Science.

NYU Footer