New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

NYU Researchers Create “Handshaking” Particles

March 24, 2010
N-329 2009-10

Physicists at New York University have created “handshaking” particles that link together based on their shape rather than randomly. Their work, reported in the latest issue of the journal Nature, marks the first time scientists have succeeded in “programming” particles to join in this manner and offers a type of architecture that could enhance the creation of synthetic materials.

“We expect these interactions to offer unprecedented opportunities for engineering ‘smart’ composite particles, new functional materials, and microscopic machinery with mobile parts,” wrote the researchers, part of NYU’s Center for Soft Matter Research.

The process is centered on creating and manipulating colloids—particles suspended within a fluid medium. Colloidal dispersions comprise such everyday items as milk, gelatin, glass, and porcelain.

Working with microscopic particles—25 placed together, end-to-end, would match the width of a strand of human hair—the researchers developed a “lock and key” mechanism that would allow specific particles to join together much in the way Pac-Man would swallow dots in the 1980s video game.

The “key” is any spherical particle. Creating the “lock,” however, required a multi-step polymerization process. To do it, the researchers took a droplet of oil and placed it in water. The process resulted in a hardened outer shell, which would then buckle to form an indentation, or Pac-Man mouth, allowing it to bind to the other sphere (“the key”).

The work is part of scientists’ ongoing efforts to understand and control how particles self-assemble to make new materials. Complex materials cannot be constructed particle by particle; rather, they must be directed to self-assemble, which would produce these materials in an efficient manner. However, manipulating the self-assembly process has proven elusive to scientists because their understanding of how particles interact is limited.

By creating a process by which particles come together to form an aggregate, physicists at NYU’s Center for Soft Matter Research have marked a next step in understanding and developing the self-assembly process.

The paper’s authors are: Stefano Sacanna and William Irvine, post-doctoral researchers in NYU’s Department of Physics, and NYU Physics Professors Paul Chaikin and David Pine.

This Press Release is in the following Topics:
Arts and Science, Research, Faculty, Faculty

Type: Press Release

Press Contact: James Devitt | (212) 998-6808

NYU Researchers Create “Handshaking” Particles

NYU physicists have created “handshaking” particles that link together based on their shape rather than randomly. The graphic shows how the researchers developed a “lock and key” mechanism that allows specific particles to join together. Image courtesy of Nature.

Search News

NYU In the News

NYU Received a Record Number of Applications

Capital New York reported NYU received a record 60,322 applications for the class of 2019, an increase of about 15 percent since last year.

NYU Students Help City Crack Down on Hookah Bars

Capital New York reported that NYU students helped New York City crack down on hookah bars that illegally include tobacco in their hookahs:

Rudin Center Study Says Mass Transit Helps Economic Mobility

The Wall Street Journal wrote about a report by Wagner’s Rudin Center that showed that mass transit could be more important than education in determining economic mobility.

Brennan Center Report Says Campaign Spending Has Jumped

Frontline did a piece about a report by the Brennan Center for Justice that said that campaign spending by outside groups has more than doubled in the last five years.

NYU’s Dorms Ranked Among the Best in the Nation ranked NYU’s student residences third in the country in its list of best college dorms.


NYU Footer