NYU Physicists Find Way to Explore Microscopic Systems Through Holographic Video


Physicists at New York University have developed a technique to record three-dimensional movies of microscopic systems, such as biological molecules, through holographic video. The work, which is reported in Optics Express, has potential to improve medical diagnostics and drug discovery.

In the microscope, a laser beam illuminates the sample. Light scattered by the sample creates an interference pattern which is magnified and recorded. Then measurements of the particle s position, size, and refractive index are obtained.
In the microscope, a laser beam illuminates the sample. Light scattered by the sample creates an interference pattern which is magnified and recorded. Then measurements of the particle s position, size, and refractive index are obtained.

Physicists at New York University have developed a technique to record three-dimensional movies of microscopic systems, such as biological molecules, through holographic video. The work, which is reported in Optics Express, has potential to improve medical diagnostics and drug discovery.

The technique, developed in the laboratory of NYU Physics Professor David Grier, is comprised of two components: making and recording the images of microscopic systems and then analyzing these images.

To generate and record images, the researchers created a holographic microscope, which is based on a conventional light microscope. But instead of relying on an incandescent illuminator, which conventional microscopes employ, the holographic microscope uses a collimated laser beam-a beam consisting of a series of parallel rays of light and similar to a laser pointer.

When an object is placed into path of the microscope’s beam, the object scatters some of the beam’s light into a complex diffraction pattern. The scattered light overlaps with the original beam to create an interference pattern reminiscent of overlapping ripples in a pool of water. The microscope then magnifies the resulting pattern of light and dark and records it with a conventional digital video recorder (DVR). Each snapshot in the resulting video stream is a ho 500

Cannot serve request to /content/nyu/en/about/news-publications/news/2009/july/nyu_physicists_find_way_to.html on this server


ApacheSling/2.2 (Day-Servlet-Engine/4.1.52, Java HotSpot(TM) 64-Bit Server VM 1.7.0_80, Linux 2.6.32-696.6.3.el6.centos.plus.x86_64 amd64)