New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Biologists Find Stem Cell-Like Functions in Other Types of Plant Cells

January 28, 2009
N-256, 2008-09

Results Suggest Plants Can Regenerate Without Stem Cells

Ordinary cells have the ability to replace lost organs in plants-a function previously thought to be limited to stem cells-researchers at New York University’s Center for Genomics and Systems Biology and Utrecht University in the Netherlands have found. The findings, which suggest that some roles of stem cells in organ regeneration may be shared by other types of cells, are published in the latest issue of the journal Nature.

Stem cells have two known fundamental properties: they can renew themselves and they can give rise to specialized cells. These traits make them the engines for regeneration, creating new cells to replace lost organs and tissue. These phenomena are especially evident in plants, which continually re-grow their branches and roots. The center of stem cell activity is a stem cell niche, where stem cells are directed to perform these renewal and regeneration functions.

However, it’s unclear how significant the stem cell niche is to organogenesis-the building and rebuilding of organs.

The scientists studied the plant Arabidopsis thaliana. The species is a good candidate for study because researchers have previously identified all of the genes expressed in its individual cells, which allows tracking of cells’ identity as they regenerate.

In the study, the researchers cut off the plant’s root tip, thereby excising the stem cell niche, and examined the return of cell identities by measuring all gene activity. The results suggested that stem cells returned quite late in regeneration after other cells were already replaced. The researchers then used mutant plants in which the stem cell niche no longer functions to confirm their initial observations. Despite the absence of the stem cell niche, the plant’s ordinary cells worked to regenerate all the major tissues constituting the root tip-a process that began hours after it had been removed.

However, researchers found that plants without functional stem cell niches could not resume normal growth, showing that other cells did not replace all functions of stem cells.

Scientists have recently shown that manipulating non-stem cells in mammals to express several genes could convert those cells into stem cells-a process known as reprogramming. In 2008, a Nature study conducted at the Harvard Stem Cell Institute recreated pancreatic cells in mice into another type of cell that produces insulin without the aid of stem cells. In the NYU-Utrecht study, the researchers sought to determine if entire organs regenerate in plants absent of stem cells without using genetic manipulation.

“You could think of these findings as a massive reprogramming of an organ’s identity without the need for a stem cell niche,” said Kenneth Birnbaum, an assistant professor of biology at NYU whose lab conducted the research. “Here is a case of an organism that can perform this kind of reprogramming naturally. This may be one reason why plants are so adept at regenerating their body parts.”

The work was supported by a grant from the National Institutes of Health.

This Press Release is in the following Topics:
Graduate School of Arts and Science, Research

Type: Press Release

Arabidopsis thaliana: Left, Vegetative stage, before flowering and growth of the floral stalk. Center: An adult plant at full flowering/seed set. Right: Flower, floral stem and seeds. White bars=1 cm, except for single flower/seeds=1 mm. ©INRA 2003

Arabidopsis thaliana: Left, Vegetative stage, before flowering and growth of the floral stalk. Center: An adult plant at full flowering/seed set. Right: Flower, floral stem and seeds. White bars=1 cm, except for single flower/seeds=1 mm. ©INRA 2003


Search News



NYU In the News

CUSP Unveils its “Urban Observatory”

Crain’s New York Business profiled CUSP’s “Urban Observatory” that is continuously photographing lower Manhattan to gather scientific data.

Post-Sandy Upgrades at the Langone Medical Center

NY1 reported on the major post-Sandy upgrades and renovations made at the Medical Center to protect the hospital from future catastrophic storms.

Steinhardt Research Helps Solve Tough Speech Problems.

The Wall Street Journal reported on research at Steinhardt’s Department of Communicative Sciences and Disorders, including an interview with Assistant Professor Tara McAllister Byun, that uses ultrasound to help solve tough speech problems.

Times Column Lauds Professor Stevenson’s New Memoir

New York Times columnist Nicholas Kristof wrote a column about “Just Mercy,” a new memoir by Law Professor Bryan Stevenson, the founder of the Equal Justice Initiative, whom he noted has been called America’s Nelson Mandela.

Entrepreneurship Lab Opens at NYU

Crain’s New York Business covered the opening of the Mark and Debra Leslie Entrepreneurial eLab, which will be the headquarters for NYU’s Entrepreneurial Institute and all of the University’s programs aimed at promoting innovation and startups.

NYU Footer