New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

Biologists Find Stem Cell-Like Functions in Other Types of Plant Cells

January 28, 2009
N-256, 2008-09

Results Suggest Plants Can Regenerate Without Stem Cells

Ordinary cells have the ability to replace lost organs in plants-a function previously thought to be limited to stem cells-researchers at New York University’s Center for Genomics and Systems Biology and Utrecht University in the Netherlands have found. The findings, which suggest that some roles of stem cells in organ regeneration may be shared by other types of cells, are published in the latest issue of the journal Nature.

Stem cells have two known fundamental properties: they can renew themselves and they can give rise to specialized cells. These traits make them the engines for regeneration, creating new cells to replace lost organs and tissue. These phenomena are especially evident in plants, which continually re-grow their branches and roots. The center of stem cell activity is a stem cell niche, where stem cells are directed to perform these renewal and regeneration functions.

However, it’s unclear how significant the stem cell niche is to organogenesis-the building and rebuilding of organs.

The scientists studied the plant Arabidopsis thaliana. The species is a good candidate for study because researchers have previously identified all of the genes expressed in its individual cells, which allows tracking of cells’ identity as they regenerate.

In the study, the researchers cut off the plant’s root tip, thereby excising the stem cell niche, and examined the return of cell identities by measuring all gene activity. The results suggested that stem cells returned quite late in regeneration after other cells were already replaced. The researchers then used mutant plants in which the stem cell niche no longer functions to confirm their initial observations. Despite the absence of the stem cell niche, the plant’s ordinary cells worked to regenerate all the major tissues constituting the root tip-a process that began hours after it had been removed.

However, researchers found that plants without functional stem cell niches could not resume normal growth, showing that other cells did not replace all functions of stem cells.

Scientists have recently shown that manipulating non-stem cells in mammals to express several genes could convert those cells into stem cells-a process known as reprogramming. In 2008, a Nature study conducted at the Harvard Stem Cell Institute recreated pancreatic cells in mice into another type of cell that produces insulin without the aid of stem cells. In the NYU-Utrecht study, the researchers sought to determine if entire organs regenerate in plants absent of stem cells without using genetic manipulation.

“You could think of these findings as a massive reprogramming of an organ’s identity without the need for a stem cell niche,” said Kenneth Birnbaum, an assistant professor of biology at NYU whose lab conducted the research. “Here is a case of an organism that can perform this kind of reprogramming naturally. This may be one reason why plants are so adept at regenerating their body parts.”

The work was supported by a grant from the National Institutes of Health.

This Press Release is in the following Topics:
Graduate School of Arts and Science, Research

Type: Press Release

Arabidopsis thaliana: Left, Vegetative stage, before flowering and growth of the floral stalk. Center: An adult plant at full flowering/seed set. Right: Flower, floral stem and seeds. White bars=1 cm, except for single flower/seeds=1 mm. ©INRA 2003

Arabidopsis thaliana: Left, Vegetative stage, before flowering and growth of the floral stalk. Center: An adult plant at full flowering/seed set. Right: Flower, floral stem and seeds. White bars=1 cm, except for single flower/seeds=1 mm. ©INRA 2003


Search News



NYU In the News

Paying It Backward: NYU Alum Funds Scholarships

The Wall Street Journal profiled Trustee Evan Chesler on why he decided to chair the Momentum fund-raising campaign.

A Nobel Prize Party: Cheese, Bubbles, and a Boson

The New Yorker talked to Professor Kyle Cranmer and graduate student Sven Kreiss about NYU’s role in the discovery of the Higgs boson, which resulted in a Nobel prize for the scientists who predicted its existence.

The World as They Knew It

The New York Times reviewed the exhibit at the Institute for the Study of the Ancient World on how ancient Greeks and Romans mapped the known and unknown areas of their world.

Elite Institutions: Far More Diverse Than They Were 20 Years Ago

NYU made stronger gains over the last 20 years in increasing diversity than any other major research university, according to the Chronicle of Higher Education.

Program Seeks to Nurture ‘Data Science Culture’
at Universities

The New York Times reported on the multi-million collaboration among NYU and two other universities to harness the potential of Big Data, including an interview with Professor Yann LeCun, director of NYU’s Center for Data Science.

NYU Footer