Systems Biology Approach Identifies Nutrient Regulation of Biological Clock in Plants

Using a systems biological analysis of genome-scale data from the model plant Arabidopsis, an international team of researchers identified that the master gene controlling the biological clock is sensitive to nutrient status. The study will appear in the latest issue of the Proceedings of the National Academy of Sciences. This hypothesis derived from multi-network analysis of Arabidopsis genomic data, and validated experimentally, has shed light on how nutrients affect the molecular networks controlling plant growth and development in response to nutrient sensing.

The study was conducted by a team of researchers at New York University’s Center for Genomics and Systems Biology, Chile’s Pontificia Universidad Católica de Chile, Dartmouth College, and Cold Spring Harbor Labs. The study’s lead authors are Rodrigo A. Gutiérrez of the Pontificia Universidad Católica de Chile and Gloria Coruzzi of NYU’s Center for Genomics and Systems Biology. They note that the systems biology approach to uncovering nutrient regulated gene networks provides new targets for engineering traits in plants of ag 500

Cannot serve request to /content/nyu/en/about/news-publications/news/2008/march/systems_biology_approach.html on this server

ApacheSling/2.2 (Day-Servlet-Engine/4.1.52, Java HotSpot(TM) 64-Bit Server VM 1.7.0_79, Linux amd64)