New York University Skip to Content Skip to Search Skip to Navigation Skip to Sub Navigation

NYU Physics Part of $6.25 Million Dept. Of Defense Grant for Nanotechnology Research

April 2, 2008
N-375, 2007-8

A consortium of researchers that includes New York University Physics Professor Andrew Kent has received a $6.25 million nanotechnology grant from the U.S. Department of Defense to design and develop nano-magnetic materials and devices, including more efficient computers and cell phones.

The consortium, led by the University of Iowa, will develop a fundamental understanding of materials and establish the engineering expertise needed to exploit hybrid structures by incorporating magnetic metals, semiconductors, and plastics for future devices, according to consortium leader Michael Flatté, a professor in the University of Iowa’s Department of Physics and Astronomy.

The consortium also includes Yuri Suzuki of the University of California, Berkeley; Giovanni Vignale of the University of Missouri at Columbia; and Jeremy Levy of the University of Pittsburgh.

The researchers say their work may lead to considerably more compact devices that operate for far longer between battery recharges. These include laptop computers, cell phones, and unmanned sensors. They add that because the processing costs for these materials are much less than those of traditional semiconductor chips, these new devices should also be inexpensive to produce.

A goal of the research is to understand how magnetism can be manipulated and modified in hybrid structures of different materials in response to electric fields and optical illumination. The magnetic coupling between these materials may occur via magnetic fields, or through the exchange or flow of electron “spin,” the fundamental property of electrons that gives rise to magnetism in materials.

Targeted device concepts include seamless integration of memory and logic, high-speed magneto-optical modulators for optical communications and switching, reconfigurable logic devices, and new sensing capabilities. The use of electron-spin-mediated coupling is expected to permit the design of devices that operate at much higher speeds than current electronic devices and at the same time use considerably less power.

In 2007, the U.S. Department of Defense awarded a team of nine scholars from six universities-including Kent and Nadrian Seeman from NYU’s Chemistry Department-a grant of $6 million over five years to exploit precise biological assembly techniques for the study of quantum physics in nanoparticle arrays. This research will produce a fundamental understanding of quantum electronic systems, which could have an impact on the development and understanding of future electronics.

Kent and his research team at NYU have recently developed a new form of non-volatile memory known as magnetoresistive random access memory, or MRAM, which will provide non-volatile storage of frequently updated, critical data, and instant-on convenience-that is, enable computers and other electronic devices to turn on in the blink of an eye. NYU’s MRAM technology may provide a more efficient and reliable type of non-volatile storage, which is computer memory retained even when a device is turned off, such as in USB flash drives, magnetic computer storage devices, and smart cards.

The technology is being commercialized by a new start-up company formed by Allied Minds, a Boston-based seed investment corporation. The new company, Spin Transfer Technologies (STT), LLC, was announced in December 2007.

This Press Release is in the following Topics:
Graduate School of Arts and Science

Type: Press Release

Search News

NYU In the News

Paying It Backward: NYU Alum Funds Scholarships

The Wall Street Journal profiled Trustee Evan Chesler on why he decided to chair the Momentum fund-raising campaign.

A Nobel Prize Party: Cheese, Bubbles, and a Boson

The New Yorker talked to Professor Kyle Cranmer and graduate student Sven Kreiss about NYU’s role in the discovery of the Higgs boson, which resulted in a Nobel prize for the scientists who predicted its existence.

The World as They Knew It

The New York Times reviewed the exhibit at the Institute for the Study of the Ancient World on how ancient Greeks and Romans mapped the known and unknown areas of their world.

Elite Institutions: Far More Diverse Than They Were 20 Years Ago

NYU made stronger gains over the last 20 years in increasing diversity than any other major research university, according to the Chronicle of Higher Education.

Program Seeks to Nurture ‘Data Science Culture’
at Universities

The New York Times reported on the multi-million collaboration among NYU and two other universities to harness the potential of Big Data, including an interview with Professor Yann LeCun, director of NYU’s Center for Data Science.

NYU Footer